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Abstract 

The simplex method is a very useful method to solve linear programming 
problems.  It gives us a systematic way of examining the vertices of the feasible 
region to determine the optimal value of the objective function.  It is executed 
by performing elementary row operations on a matrix that we call the simplex 
tableau.  It is an iterative method that by repeated use gives us the solution to 
any n variable linear programming model.  In this paper, we apply the change 
of basis to construct following simplex tableaus without applying elementary 
row operations on the initial simplex tableau. 

Keywords: change of basis, linear programming, simplex method, optimization, 
linear algebra 

 

Introduction 

In the summer of 1947, George B. Dantzig started to work on the simplex method for 
solving linear programs.  The linear programming problem is to find 

min 𝑧,  𝒙 ≥ 0 such that 𝐴𝒙 = 𝒃, 𝒄𝒙 = 𝑧𝑚𝑖𝑛 

where 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛), 𝐴 is an 𝑚 by 𝑛 matrix, and 𝑏 and 𝑐 are column and row 
vectors [1]. 

He presented in his work titled “Maximization of a linear function of variables subject 
to linear inequalities” the details of the simplex method by means of linear algebra 
[2].  The significance of this work lies in showing that we can do something about 
finding an optimal solution if such one exists.   This method allows us to compute the 
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optimal solution.  Two issues in the simplex method are of great importance:  First, 
with the simplex method we can obtain a basic feasible solution with which to start 
the computation and second, the simplex method ensures that the algorithm finishes 
in a finite number of steps either with an optimal solution or with the conclusion that 
there is no optimal solution [3]. 

Basis and coordinates[4] 

Let 𝑉 be a vector space and let 𝐵 = {𝒗1, 𝒗2, … , 𝒗𝑛} be a set of vectors in 𝑉. 𝐵 forms a 
basis for 𝑉 if the following two conditions hold: 

1. 𝐵 is linearly independent. 

2. 𝐵 spans 𝑉. 

If 𝐵 = {𝒗1, 𝒗2, … , 𝒗𝑛} is a basis for 𝑉, then every vector 𝒙 ∈ 𝑉 can be expressed 
uniquely as a linear combination of 𝒗1, 𝒗2, … , 𝒗𝑛. 

𝒙 = 𝑦1𝒗1 + 𝑦2𝒗2 +  … + 𝑦𝑛𝒗𝑛                                                  (1) 

Theorem 1.: If 𝐵 = {𝒗1, 𝒗2, … , 𝒗𝑛} is a basis for a vector space 𝑉, then every vector 𝒙 
in 𝑉 can be written in one and only one way as a linear combination of vectors in 𝐵. 

Proof 1.: Suppose there are two sets of coefficients for 𝒙. 

𝒙 = 𝑘1𝒗1 + 𝑘2𝒗2 +  … + 𝑘𝑛𝒗𝑛                                                 (2) 

and also 

 𝒙 = 𝑙1𝒗1 + 𝑙2𝒗2 +  … + 𝑙𝑛𝒗𝑛                                                    (3) 

Subtracting the two expressions for 𝑥 gives 

𝟎 = (𝑘1 − 𝑙1)𝒗1 + (𝑘2 − 𝑙2)𝒗2 +  … + (𝑘𝑛 − 𝑙𝑛)𝒗𝑛               (4) 

Since {𝒗1, 𝒗2, … , 𝒗𝑛} is linearly independent, so the coefficients in this expression 
must vanish: 

(𝑘1 − 𝑙1) = 0 implies 𝑘1 = 𝑙1 

(𝑘2 − 𝑙2) = 0 implies 𝑘2 = 𝑙2 

… 

(𝑘𝑛 − 𝑙𝑛) = 0 implies 𝑘𝑛 = 𝑙𝑛                                       
(5) 

Therefore, the coefficients 𝑘1, 𝑘2, … , 𝑘𝑛 are unique as claimed. 

Definition 1.: The coordinates of a vector 𝒙 in a vector space 𝑉 with respect to a basis 
𝐵 = {𝒗1, 𝒗2, … , 𝒗𝑛}  are those coefficients (𝑦𝑖) which uniquely express 𝒙 as linear 
combination of the basis vectors. 

  𝒙 = 𝑦1𝒗1 + 𝑦2𝒗2 +  … + 𝑦𝑛𝒗𝑛 = 𝑦1𝑗𝒗1 + 𝑦2𝑗𝒗2 +  … + 𝑦𝑛𝑗𝒗𝑛                  (6) 
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These coefficients 𝑦1, 𝑦2, … , 𝑦𝑛 are called the coordinates of 𝒙 relative to the basis 
(𝑦𝑖 ∈ ℝ).  The coordinate matrix (or coordinate vector) of relative to 𝐵 is the column 
matrix in ℝ𝑛 whose components are the coordinates of 𝒙. 

[𝒙]𝐵 = [

𝑦1

𝑦2

…
𝑦𝑛

] = [

𝑦1𝑗

𝑦2𝑗

…
𝑦𝑛𝑗

]                                                               (7) 

In Figure 1, two coordinate systems in the plane are displayed: 

• coordinate plane 𝑥𝑦 

• coordinate plane 𝑥′𝑦′ 

Every coordinate system is defined by a basis. 

• The standard coordinate system is defined by the standard basis: 

𝑆 = (𝒆1, 𝒆2) = {(1,0), (0,1)}                                                  (8) 

• The dashed coordinate system (non-standard) is defined by the basis:  

  𝐵 = (𝒖1, 𝒖2) = {(3,2), (−2,1)}                                              (9) 

In Figure 2, the vector 𝒖 = (1,3) has standard coordinates 𝑥 = 1 and 𝑦 = 3. 

If we use the dashed coordinate system (non-standard), whose coordinate axes are 
labelled 𝑥′ and 𝑦′; the dashed coordinates of 𝒖 are 𝑥′ = 1 and 𝑦′ = 1. 

3. Change of Basis[4] 

If we are provided with the coordinate matrix of a vector relative to one basis 𝐵 and 
are asked to find the coordinate matrix of the vector relative to another basis 𝐵′, we 
have to apply the procedure of change of basis.  This is shown in Example 1. 

Example 1.: Find the coordinate matrix of 𝒙 = {1, −2, −1} in ℝ3 relative to non-
standard basis 𝐵′ = (𝒖1, 𝒖2, 𝒖3) = {(0,0, −1), (1,3, −1), (2,1,1)}. 

Solution 1.: First, 𝒙 is written as a linear combination of 𝒖1, 𝒖2, 𝒖3. 

𝒙 = 𝑦1𝒖1 + 𝑦2𝒖2 + 𝑦3𝒖3                                                            (10) 

(1, −2, −1) = 𝑦1(0,0, −1) + 𝑦2(1,3, −1) + 𝑦3(2,1,1)                       (11) 

Then, the following system of linear equations is obtained. 

                  𝑦2 + 2𝑦3  =   1 

                     3𝑦2 +   𝑦3 = −2 

                                            −𝑦1 − 𝑦2 +   𝑦3 = −1                                                                 (12) 
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Figure 1: Coordinate planes 𝑥𝑦 and 𝑥′𝑦′ 

            

            

                                                                                       

             

            

            

            

            

            

            

            

            

 

This can be written in matrix form 𝑃 ∙ [𝒙]𝐵′ = [𝒙]𝐵 

[
   0    1 2
   0    3 1
−1 −1 1

] ∙ [

𝑦1

𝑦2

𝑦3

] = [
   1
−2
−1

]                                                  (13) 

Where 𝑃 is the transition matrix from 𝐵′ to 𝐵, [𝒙]𝐵′  is the coordinate matrix of 𝑥 
relative to the basis 𝐵′ and [𝒙]𝐵 is the coordinate matrix of 𝒙 relative to the basis 𝐵.  
(13) shows the change of basis from 𝐵′ to 𝐵. 

[𝒙]𝐵′  can be found by [𝒙]𝐵′ = 𝑃−1 ∙ [𝒙]𝐵  

  [

𝑦1

𝑦2

𝑦3

] = [
   0    1 2
   0    3 1
−1 −1 1

]

−1

∙ [
   1
−2
−1

] = [
   3
−1
   1

]                                    (14) 

Where 𝑃−1 is the transition matrix from 𝐵 to 𝐵′.  So the solution of the system given 
in (12) is 𝑦1 = 3, 𝑦2 = −1 and 𝑦3 = 1, so the coordinate matrix of 𝒙 relative to 𝐵′ is 

y 

x' 
y' 

x 

u1 e2 

u2 e1 
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Figure 2: Vector 𝒖 in both coordinate systems 

            

            

            

            

            

            

            

            

            

            

            

            

 

[𝒙]𝐵′ = [
   3
−1
   1

]                                                           (15) 

Theorem 2.: Let 𝐵 = {𝒗1, 𝒗2, … , 𝒗𝑛} and 𝐵′ = {𝒖1, 𝒖2, … , 𝒖𝑛} be two ordered bases 
for ℝ𝑛.  Then the transition matrix 𝑃−1 from 𝐵 to 𝐵′ can be found by using Gauss-
Jordan elimination on the matrix [𝐵′: 𝐵] as follows: 

[𝐵′: 𝐵] ⟶ [𝐼𝑛: 𝑃−1]                                             (16) 

Example 2. shows an application of (16). 

Example 2.: Find the transition matrix from 𝐵 to 𝐵′ for the following bases in ℝ3. 

𝐵 = {(1,0,0), (0,1,0), (0,0,1)} and 𝐵′ = {(1, −1,0), (−2,1,2), (1, −1, −1)} 

Solution 2.: First, 𝐵 and 𝐵′ are written in matrix form. 

y 

x 

x' 

y' u 

u1 e2 

e1 u2 
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𝐵 = [
 1 0 0
0 1 0
0 0 1

]   and  𝐵′ = [
   1 −2    1
−1    1 −1
   0    2 −1

]                                        (17) 

The matrix [𝐵′: 𝐵] is formed and Gauss-Jordan Elimination is used to rewrite [𝐵′: 𝐵] 
as [𝐼𝑛: 𝑃−1]. 

                                                                   [𝐵′: 𝐵] = [
   1 −2    1
−1    1 −1
   0    2 −1

:
1 0 0
0 1 0
0 0 1

]  … 

[𝐼𝑛: 𝑃−1] = [
1 0 0
0 1 0
0 0 1

:
   1    0    1
−1 −1    0
 −2 −2 −1

]                                                      (18) 

Transition matrix from 𝐵 to 𝐵′ is then 

𝑃−1 = [
   1    0    1
−1 −1    0
 −2 −2 −1

]                                                                           (19) 

Application 

The simplex method is a very useful method to solve linear programming problems.  
It gives us a systematic way of examining the vertices of the feasible region to 
determine the optimal value of the objective function.  It is executed by performing 
elementary row operations on a matrix that we call the simplex tableau.  This tableau 
consists of augmented matrix corresponding to the constraint equations together 
with the coefficients of the objective function written in the form 

            𝑐1𝑥1 + 𝑐2𝑥2 +  … + 𝑐𝑛𝑥𝑛 + 0 ∙ 𝑠1 + 0 ∙ 𝑠2 +  … + 0 ∙ 𝑠𝑚 − 𝑧 = 0                  
(20)                                                        

In this paper, we apply the change of basis to construct following simplex tableaus 
without applying elementary row operations on the initial simplex tableau. 

Example 3.: 𝑧𝑚𝑎𝑥 = 2𝑥1 + 𝑥2 + 3𝑥3 

                     s.t.             𝑥1 + 2𝑥2              ≤  8 

                                       𝑥1 +   𝑥2  + 2𝑥3 ≤ 12 

                                          𝑥1, 𝑥2, 𝑥3 ≥ 0                  
(21) 

Solution 3.: 𝑧𝑚𝑎𝑥 = 2𝑥1 + 𝑥2 + 3𝑥3 + 0 ∙ 𝑠1 + 0 ∙ 𝑠2 

                     s.t.              𝑥1 + 2𝑥2 + 0 ∙ 𝑥3 + 1 ∙ 𝑠1 + 0 ∙ 𝑠2 = 8 

                                        𝑥1 +   𝑥2 + 2 ∙ 𝑥3 + 0 ∙ 𝑠1 + 1 ∙ 𝑠2 = 12 

                             𝑥1, 𝑥2, 𝑥3, 𝑠1, 𝑠2 ≥ 0                                                
(22) 
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Table 1: Initial simplex tableau 

𝑐𝐵  

BASIC 

VARIABLES 

𝑐𝑗 2 1 3 0 0  

𝑥𝐵 𝑥1 𝑥2 𝑥3 𝑠1 𝑠2  

0 𝑠1 8  1 2 0 1 0  

0 𝑠2 12  1 1 2 0 1 MIN RATIO 

𝑧𝑗 0  0 0 0 0 0  

𝑧𝑗 − 𝑐𝑗 ----- -2   -1 -3 0 0  

    MIN    

 

Coefficient vectors of 𝑥1, 𝑥2, 𝑥3, 𝑠1, 𝑠2 are respectively 

              𝒂1 = [
1
1

] 𝒂2 = [
2
1

] 𝒂3 = [
0
2

] 𝒂4 = [
1
0

] 𝒂5 = [
0
1

]                                  

(23) 

In the initial simplex tableau in Table 1, the coefficient vectors that are in the basis 𝐵 
are 

𝒂4 = [
1
0

] 𝒂5 = [
0
1

]                                                          (24) 

𝐵 = (𝒂4, 𝒂5) (Basis of the initial simplex tableau) 

In the initial simplex tableau, the pivot column is the coefficient vector of 𝑥3, namely 

𝒂3.  The coefficients in the pivot column are the coordinates of 𝒂3 relative to the basis 
𝐵. 

After pivoting in the initial simplex tableau, we decided that 𝑠2 is leaving the solution 
as 𝑥3 is entering the solution.  In the second simplex tableau, the coefficient vectors 
that are in the ordered basis 𝐵′ are 

𝒂4 = [
1
0

] 𝒂3 = [
0
2

]                                                          (25) 

𝐵′ = (𝒂4, 𝒂3) (Basis of the second simplex tableau) 

Without applying elementary row operations on the initial simplex tableau, we apply 
the change of basis to construct the second tableau.  To get the transition matrix 𝑃−1, 
the matrix [𝐵′: 𝐵] is formed and Gauss-Jordan Elimination is used to rewrite [𝐵′: 𝐵] 
as [𝐼𝑛: 𝑃−1]. 

[𝐵′: 𝐵] = [
1 0
0 2

:
1 0
0 1

]  … 
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         [𝐼𝑛: 𝑃−1] = [
1 0
0 1

:
1 0
0 1/2

]                                                            (26) 

Transition matrix from 𝐵 to 𝐵′ is then 

𝑃−1 = [
1 0
0 1/2

]                                                                            (27) 

To construct the second tableau in Table 2, we multiply the augmented matrix in the 
initial tableau with the transition matrix when the basis is changing from 𝐵 to 𝐵′.  So 
we get the augmented matrix of the second tableau                 

              𝑃−1 ∙ 𝐴𝑈𝐺𝑀𝐸𝑁𝑇𝐸𝐷 𝑀𝐴𝑇𝑅𝐼𝑋 = [
1 0
0 1/2

] [
8 1 2 0 1 0

12 1 1 2 0 1
] =

                                                                                 = [
8 1 2 0 1 0
6 1/2 1/2 1 0 1/2

]                                                  

(28) 

Table 2: Second simplex tableau 

𝑐𝐵  

BASIC 

VARIABLES 

𝑐𝑗 2 1 3 0 0  

𝑥𝐵 𝑥1 𝑥2 𝑥3 𝑠1 𝑠2  

0 𝑠1 8  1 2 0 1 0 MIN RATIO 

3 𝑥3 6  1/2 1/2 1 0 1/2  

𝑧𝑗 18  3/2 3/2 3 0 3/2  

𝑧𝑗 − 𝑐𝑗 ----- -1/2 1/2 0 0 3/2  

  MIN      

Recall that in the initial simplex tableau the coefficients in the pivot column are the 
coordinates of 𝒂3 relative to the basis 𝐵.  But for the second simplex tableau we have 
another basis 𝐵′.  The coefficient vector of 𝑥3 in the second simplex tableau gives us 
the coordinates of 𝒂3 relative to the basis 𝐵′. 

First, 𝒂3 is written as a linear combination of 𝒂4 and 𝒂3. 

(0,2) = 𝑐1(1,0) + 𝑐2(0,2)                                                             (29) 

Then, the following system of linear equations is obtained. 

                    𝑐1 = 0 

              2𝑐2 = 2                                                                          (30) 

We can see that 

[
𝑐1

𝑐2
] = [

0
1

]                                                                 (31) 
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So [𝒂3]𝐵′  is  

[𝒂3]𝐵′ = [
0
1

]                                                                 (32) 

The same holds for the coefficient vectors of 𝑥1, 𝑥2, 𝑠1 and 𝑠2 as well.                                                            

After pivoting in the second simplex tableau, we decided that 𝑠1 is departing from the 
solution as 𝑥1 is entering the solution.  In the third simplex tableau, the coefficient 
vectors that are in the ordered basis 𝐵′′ are 

𝒂1 = [
1
1

] 𝒂3 = [
0
2

]                                                               (33) 

𝐵′′ = (𝒂1, 𝒂3) (Basis of the third simplex tableau) 

Without applying elementary row operations on the second simplex tableau, we apply 

the change of basis to construct the third tableau.  To get the transition matrix 𝑃′(−1), 
the matrix [𝐵′′: 𝐵′] is formed and Gauss-Jordan Elimination is used to rewrite [𝐵′′: 𝐵′] 

as [𝐼𝑛: 𝑃′(−1)]. 

[𝐵′′: 𝐵′] = [
1 0
1 2

:
1 0
0 2

]  … 

[𝐼𝑛: 𝑃′(−1)] = [
1 0
0 1

:
    1 0

−1/2 1
]                                                                (34) 

Transition matrix from 𝐵′ to 𝐵′′ is then 

𝑃′(−1) = [
    1 0

−1/2 1
]                                                                        (35) 

To construct the third tableau in Table 3, we multiply the augmented matrix in the 
second tableau with the transition matrix when the basis is changing from 𝐵′ to 𝐵′′.  
So we get the augmented matrix of the third tableau 

𝑃′(−1) ∙ 𝐴𝑈𝐺𝑀𝐸𝑁𝑇𝐸𝐷 𝑀𝐴𝑇𝑅𝐼𝑋 = [
    1 0

−1/2 1
] [

8 1  2 0 1 0
6 1/2 1/2 1 0 1/2

] =

                                                                       = [
8 1     2 0    1 0
2 0 −1/2 1 −1/2 1/2

]                                                     

(36)    

In the third tableau there are no negative elements in the bottom row 𝑧𝑗 − 𝑐𝑗 .  So the 

optimal solution is 22 monetary units (subsequently referred to as m.u.). 

(𝑥1, 𝑥2, 𝑥3, 𝑠1, 𝑠2) = (8,0,2,0,0)                                                   (37) 

𝑧𝑚𝑎𝑥 = 2𝑥1 + 𝑥2 + 3𝑥3 = 2 ∙ 8 + 1 ∙ 0 + 3 ∙ 2 = 22 m.u.                                  (38) 
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Table 3: Third (optimal) simplex tableau 

𝑐𝐵  

BASIC 

VARIABLES 

𝑐𝑗 2 1 3 0 0 

𝑥𝐵 𝑥1 𝑥2 𝑥3 𝑠1 𝑠2 

2 𝑥1 8  1 2 0 1 0 

3 𝑥3 2  0 -1/2 1 -1/2  1/2 

𝑧𝑗 22  2  5/2 3  1/2 3/2 

𝑧𝑗 − 𝑐𝑗 -----  0    3/2 0 1/2 3/2 

  
NO NEGATIVE ELEMENTS IN  
𝑧𝑗 − 𝑐𝑗  

Recall that in the initial simplex tableau the coefficients in the pivot column are the 
coordinates of 𝒂3 relative to the basis 𝐵.  But for the third simplex tableau we have 
another basis 𝐵′′.  The coefficient vector of 𝑥3 in the third simplex tableau gives us the 
coordinates of 𝒂3 relative to the basis 𝐵′′. 

First, 𝒂3 is written as a linear combination of 𝒂1 and 𝒂3. 

(0,2) = 𝑐1(1,1) + 𝑐2(0,2)                                                             (39) 

Then, the following system of linear equations is obtained. 

 

                    𝑐1 = 0 

 𝑐1 + 2𝑐2 = 2                                                                  (40) 

We can see that 

[
𝑐1

𝑐2
] = [

0
1

]                                                                 (41) 

So [𝒂3]𝐵′′  is  

[𝒂3]𝐵′′ = [
0
1

]                                                                 (42) 

The same holds for the coefficient vectors of 𝑥1, 𝑥2, 𝑠1 and 𝑠2 as well.                                                            

1 Economic interpretation of the coordinate vectors in the optimal 
simplex tableau 

The optimal simplex tableau in Table 3 shows that 8 units of 𝑥1 and 2 units of 𝑥3  

should be produced to get 22 m.u.  𝑥2 is a nonbasic variable which means that no unit 
of 𝑥2 should be produced.  

Let 𝒚2 be the coordinate vector of 𝑎2 relative to the basis 𝐵′′ in the optimal simplex 
tableau. So 𝑦2 is 
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𝒚2 = [
     2

−1/2
] = [𝒂2]𝐵′′                                                    (43)                     

and we can obtain 𝒂2 by  

𝐵′′𝒚2 = [
1 0
1 2

] [
     2

−1/2
] = [

2
1

] = 𝒂2                                           (44)                     

𝒂2  can be represented by a linear combination of 𝒂1 and 𝒂3. 

 𝒂2 = 2𝒂1 −
1

2
𝒂3                                                                  (45) 

(45) tells us how much more or less we should produce of 𝑥1  and 𝑥3 if we want to 
produce one unit of 𝑥2.  

In the simplex algorithm basic variables can be represented by 

𝒙𝐵 = (𝐵)−1𝒃 − ∑ [𝒚𝑗]𝑥𝑗𝑗∈𝐽                                                (46) 

where 𝐽 is the set of the indices of the nonbasic variables [5].  Therefore, we can get 

𝜕𝒙𝐵

𝜕𝑥𝑗
= −𝒚𝑗                                                                   (47) 

where (−𝑦𝑗) shows the rate of change of the basic variables as a function of the 

nonbasic variable 𝑥𝑗 .  If we increase 𝑥𝑗  by one unit, the 𝑖th basic variable 𝑥𝐵𝑖  should 

be decreased by an amount 𝑦𝑖𝑗 .  This can be expressed by 

𝜕𝑥𝐵𝑖

𝜕𝑥𝑗
= −𝑦𝑖𝑗                                                                   (48) 

Going back to Example 3, we have  

𝜕𝒙𝐵

𝜕𝑥2
= −𝒚2 = [

−𝑦12

−𝑦22
] = [

−2
1/2

]                                    (49)                     

(49) tells us that if we want to produce one unit of 𝑥2 we should decrease the 
production of 𝑥1 by 2 units and increase the production of 𝑥3 by ½ unit.  Substituting 
these values for 𝑥1, 𝑥2 and 𝑥3 in the constraints of Example 3, we see that 

  𝑥1 + 2𝑥2              ≤  8 ⇒ (8 − 2) + 2 ∙ 1 = 8 

                                                   𝑥1 +   𝑥2  + 2𝑥3 ≤ 12 ⇒ (8 − 2) + 1 + 2(2 + 1/2) = 12                                
(50) 

are satisfied in equality.  But if we substitute these values in the objective function we 
see that 

𝑧𝑚𝑎𝑥 = 2𝑥1 + 𝑥2 + 3𝑥3 = 2(8 − 2) + 1 ∙ 1 + 3(2 + 1/2) = 41/2 m.u.                      (51) 
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gives us less profit than before.  To make the same profit as before, we should increase 
the marginal profit of 𝑥2.  By using the trick 𝑧𝑗 = 𝑐𝑗 + (𝑧𝑗 − 𝑐𝑗) we can calculate how 

much the new marginal profit of 𝑥2 should be to make the same profit as before 

𝑧2 = 𝑐2 + (𝑧2 − 𝑐2) = 1 + 3/2 = 5/2 m.u.                                                   (52) 

(52) tells us that the marginal profit should be 5/2 m.u. to make the same profit as 
before because 

𝑧𝑚𝑎𝑥 = 2𝑥1 + 5/2𝑥2 + 3𝑥3 = 2(8 − 2) + 5/2 ∙ 1 + 3(2 + 1/2) = 22 m.u.                      
(53) 

Conclusion 

Every time the simplex algorithm calculates the next tableau, coefficient matrix of the 
original standard problem is multiplied by the inverse of the basis matrix of the actual 
tableau by using the formula 𝐵−1𝒂𝑗 = 𝒚𝑗 . This paper shows that the next tableau can 

be calculated by multiplying the transition matrix by the actual augmented matrix by 
using the formula  𝑃−1𝒚𝑗 = 𝒚𝑗

′ . 

In each tableau, the coordinate vector of a variable gives us the coordinates relative 
to the actual basis.  In this paper, we made an economic interpretation of that 
coordinate vector. 
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