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Abstract

The simplex method is a very useful method to solve linear programming
problems. It gives us a systematic way of examining the vertices of the feasible
region to determine the optimal value of the objective function. It is executed
by performing elementary row operations on a matrix that we call the simplex
tableau. Itis an iterative method that by repeated use gives us the solution to
any n variable linear programming model. In this paper, we apply the change
of basis to construct following simplex tableaus without applying elementary
row operations on the initial simplex tableau.

Keywords: change of basis, linear programming, simplex method, optimization,
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Introduction

In the summer of 1947, George B. Dantzig started to work on the simplex method for
solving linear programs. The linear programming problem is to find

min z, x = 0 such that Ax = b,cx = z,,;;,

where x = (xq, X3, ..., X,), A is an m by n matrix, and b and c are column and row
vectors [1].

He presented in his work titled “Maximization of a linear function of variables subject
to linear inequalities” the details of the simplex method by means of linear algebra
[2]. The significance of this work lies in showing that we can do something about
finding an optimal solution if such one exists. This method allows us to compute the
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optimal solution. Two issues in the simplex method are of great importance: First,
with the simplex method we can obtain a basic feasible solution with which to start
the computation and second, the simplex method ensures that the algorithm finishes
in a finite number of steps either with an optimal solution or with the conclusion that
there is no optimal solution [3].

Basis and coordinates[4]

Let V be a vector space and let B = {v,,v,, ..., v, } be a set of vectors in V. B forms a
basis for I if the following two conditions hold:

1. Bislinearly independent.
2. BspansV.

If B ={v,,v,,..,v,} is a basis for V, then every vector x € V can be expressed
uniquely as a linear combination of v, v,, ..., v,.

X =YV + Y0+ ..+ YV, (1)

Theorem 1.: If B = {v,,v,, ..., v, } is a basis for a vector space V, then every vector x
in VV can be written in one and only one way as a linear combination of vectors in B.

Proof 1.: Suppose there are two sets of coefficients for x.
x=kiv; + kv, + ...+ kv, (2)
and also
x=Lv+Lv,+ ..+ 1L,v, (3)
Subtracting the two expressions for x gives
0= (ks —l)Dvy + (ky = v + o+ (ky = L)vy (4)

Since {v4,v,, ..., v,} is linearly independent, so the coefficients in this expression
must vanish:

(kl - ll) =0 lmplleS k1 = ll
(kz - lz) =0 lmplleS kz = lz

(k, —1,) = 0implies k,, = [,
(5)
Therefore, the coefficients k4, k5, ..., k;, are unique as claimed.
Definition 1.: The coordinates of a vector x in a vector space VV with respect to a basis
B = {v,,v,, ...,v,} are those coefficients (y;) which uniquely express x as linear
combination of the basis vectors.
X =)Y1Vq + Y2V, + ...+ YnVp = yljvl + yzij + ...+ ynjvn (6)
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These coefficients yy,y,, ..., ¥, are called the coordinates of x relative to the basis
(y; € R). The coordinate matrix (or coordinate vector) of relative to B is the column
matrix in R"™ whose components are the coordinates of x.

V1 Vij
(] = [ﬁvﬂ = [’Vi" )
Yn yn]

In Figure 1, two coordinate systems in the plane are displayed:
e coordinate plane xy
e coordinate plane x'y’

Every coordinate system is defined by a basis.

o The standard coordinate system is defined by the standard basis:

S =(eq,e,) ={(1,0),(0,1)} (8)
o The dashed coordinate system (non-standard) is defined by the basis:
B = (uy,u,) ={(3,2),(—2,1)} 9)

In Figure 2, the vector u = (1,3) has standard coordinates x = 1 and y = 3.

If we use the dashed coordinate system (non-standard), whose coordinate axes are
labelled x" and y'; the dashed coordinates of ware x' = 1and y’ = 1.

3. Change of Basisl*!

If we are provided with the coordinate matrix of a vector relative to one basis B and
are asked to find the coordinate matrix of the vector relative to another basis B’, we
have to apply the procedure of change of basis. This is shown in Example 1.

Example 1.: Find the coordinate matrix of x = {1,—2,—1} in R3 relative to non-
standard basis B" = (uq, u,, u3) = {(0,0,—1),(1,3,-1),(2,1,1)}.

Solution 1.: First, x is written as a linear combination of u,, u,, us.

X =yiuy + YU + ysug (10)
(1,-2,-1) = y,(0,0,-1) + y,(1,3,-1) + y3(2,1,1) (11)
Then, the following system of linear equations is obtained.
y2+2y; = 1
3y, + y3 = —2
Yy1—=Y2t yz3=-1 (12)
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Figure 1: Coordinate planes xy and x'y’
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This can be written in matrix form P - [x] 5 =
0 1 2] V1
0 3 1|-|»: (13)
-1 -1 11 s

Where P is the transition matrix from B’ to B, [x]g is the coordinate matrix of x
relative to the basis B’ and [x]j is the coordlnate matrix of x relative to the basis B.
(13) shows the change of basis from B’ to B.

[x]p’ can be found by [x]z = P71 [x]p

CRCRRRE Y

Where P! is the transition matrix from B to B'. So the solution of the system given
in (12)isy; = 3, ¥y, = —1 and y3 = 1, so the coordinate matrix of x relative to B' is
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Figure 2: Vector u in both coordinate systems
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[x]gr =|-1 (15)

Theorem 2.: Let B = {v4,v,,...,v,} and B’ = {uy,u,, ..., u,} be two ordered bases
for R"™. Then the transition matrix P~! from B to B’ can be found by using Gauss-
Jordan elimination on the matrix [B': B] as follows:

[B":B] — [I,,: P71] (16)
Example 2. shows an application of (16).
Example 2.: Find the transition matrix from B to B’ for the following bases in R3.
B ={(1,0,0),(0,1,0),(0,0,1)} and B' = {(1,-1,0),(—=2,1,2),(1,-1,-1)}

Solution 2.: First, B and B’ are written in matrix form.
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1 0 0 1 -2 1
B=|0 1 ol andB'=[-1 1 -1 (17)
0 0 1 0 2 -1

The matrix [B': B] is formed and Gauss-Jordan Elimination is used to rewrite [B': B]

as [L,: P71].
1 -2 1 1 0 O
[B':B] =|-1 1 -1:0 1 O0f ..

0 2 -1 0 0 1

1 0 O 1 0 1
[I.:P711=]0 1 0:-1 -1 0 (18)
0 0 1 -2 -2 -1
Transition matrix from B to B’ is then
1 0 1
Pl=]-1 -1 o0 (19)
| -2 -2 -1

Application

The simplex method is a very useful method to solve linear programming problems.
It gives us a systematic way of examining the vertices of the feasible region to
determine the optimal value of the objective function. It is executed by performing
elementary row operations on a matrix that we call the simplex tableau. This tableau
consists of augmented matrix corresponding to the constraint equations together
with the coefficients of the objective function written in the form

C1X1 +Cx+ .+ cpxy, +0:5,+0s,+ ...+0's, —2z=0
(20)

In this paper, we apply the change of basis to construct following simplex tableaus
without applying elementary row operations on the initial simplex tableau.

Example 3.: z,,,,,, = 2x1 + x5 + 3x3
s.t. X1 + 2x, <8
X1+ Xy +2x3 <12
X1,%2,%x3 =0
(21)
Solution 3.: 2,5, = 2x; +x, +3x3+0-5; + 05,
s.t. X1 +2xy+0x3+1s,+0-5,=28
X1+ X +2-x3+0-s;,+1-s,=12

X1,X2,%X3,51,S2 = 0
(22)
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Table 1: Initial simplex tableau

BASIC G 2 | 1 3 0] o
8 VARIABLES Xs | x| % Xxs | 81 | s,
0 51 8 1| 2 0 1] o0
0 5 12 1| 1 2 0 | 1 MIN RATIO
z 0 0] o 0 0| o
Z—¢ | 2 | 1 3 0| o
MIN

Coefficient vectors of x4, X, X3, 51, S, are respectively
a =[] @2 =[] as = [}] @ = [g] as = [}]
(23)

In the initial simplex tableau in Table 1, the coefficient vectors that are in the basis B
are

_n _ [0
as = [o] as = [1] (24)
B = (a4, as) (Basis of the initial simplex tableau)

In the initial simplex tableau, the pivot column is the coefficient vector of x5, namely
a;. The coefficients in the pivot column are the coordinates of a; relative to the basis
B.

After pivoting in the initial simplex tableau, we decided that s, is leaving the solution
as x5 is entering the solution. In the second simplex tableau, the coefficient vectors
that are in the ordered basis B’ are

11 . 10
as = [o] as = [2] (25)
B' = (a4, a3) (Basis of the second simplex tableau)

Without applying elementary row operations on the initial simplex tableau, we apply
the change of basis to construct the second tableau. To get the transition matrix P1,
the matrix [B': B] is formed and Gauss-Jordan Elimination is used to rewrite [B’: B]
as [L,: P71].

[B":B] =

1010
0 2°0 1f
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p1p_ |1 01 0
Transition matrix from B to B’ is then
1 0
-1 _—
Pr=y 1)) 27)

To construct the second tableau in Table 2, we multiply the augmented matrix in the
initial tableau with the transition matrix when the basis is changing from B to B’. So
we get the augmented matrix of the second tableau

) 1 078 1.2 0 1 0
1. = =
P~1- AUGMENTED MATRIX [0 1/2“ 112 0 1]
1

12
_[8 2 01 0
“l6 12 172 1 0 1,2

(28)
Table 2: Second simplex tableau
BASIC Cj 2 1 3 0 0
® | VARIABLES X5 X X, | x| s | s
0 S1 8 1 2 0 1 0 MIN RATIO
3 X3 6 12 172 | 1 | o [1/2
z 18 3/2 | 32 3 ] 0] 32
zi—¢ | - ‘172 |12 0| o0 | 302
MIN

Recall that in the initial simplex tableau the coefficients in the pivot column are the
coordinates of a; relative to the basis B. But for the second simplex tableau we have
another basis B'. The coefficient vector of x5 in the second simplex tableau gives us
the coordinates of a; relative to the basis B’.

First, a; is written as a linear combination of a, and a;.
(0,2) = ¢1(1,0) + ¢,(0,2) (29)
Then, the following system of linear equations is obtained.
cp =0
2c, =2 (30)

2] = [3] G1)
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So [az]p is

_ 10
[asler = 7] (32)
The same holds for the coefficient vectors of x4, x5, s; and s, as well.

After pivoting in the second simplex tableau, we decided that s, is departing from the
solution as x; is entering the solution. In the third simplex tableau, the coefficient
vectors that are in the ordered basis B" are

M _ [0
a1 _'[1] as _'[2] (33)
B" = (a4, a3) (Basis of the third simplex tableau)

Without applying elementary row operations on the second simplex tableau, we apply
the change of basis to construct the third tableau. To get the transition matrix P'(-1,
the matrix [B": B'] is formed and Gauss-Jordan Elimination is used to rewrite [B"": B']
as [I,: P'CV.

[B”:B’]=[1 0.1 0]

1 2°0 2
, 1 0 1 0
[1n: P 1]_! t—1/2 1] (34)
Transition matrix from B’ to B"' is then
1 0
,(_1> —
p [_1/2 1] (35)

To construct the third tableau in Table 3, we multiply the augmented matrix in the
second tableau with the transition matrix when the basis is changing from B’ to B"'.
So we get the augmented matrix of the third tableau

P'D . AUGMENTED MATRIX = [1/2 1”6 1/2 12 0 1 0]

/2 1 0 1/2
0
[2 0 —1/2 1 —1/2 1/2]
(36)

In the third tableau there are no negative elements in the bottom row z; — ¢;. So the
optimal solution is 22 monetary units (subsequently referred to as m.u.).

(-xly xZ' x3: Sl: SZ) = (810'25050) (37)
Zmax = 2% + X, +3x3 =2-8+1-0+3-2=22mu (38)
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Table 3: Third (optimal) simplex tableau

BASIC g |2 1 3 0 0
“® | VARIABLES X X X X 51 s
2 x 8 1|2 0 1 0
3 X3 2 0 |-1/2 1 1/2 1/2
z 22 2 5/2 3 1/2 3/2
z—¢ |- 0 3/2 0 1/2 3/2
NO NEGATIVE ELEMENTS IN
Z — ¢

Recall that in the initial simplex tableau the coefficients in the pivot column are the
coordinates of a; relative to the basis B. But for the third simplex tableau we have
another basis B". The coefficient vector of x5 in the third simplex tableau gives us the
coordinates of a relative to the basis B"'.

First, a; is written as a linear combination of a; and a;.
(0,2) = ¢;(1,1) +¢,(0,2) (39)

Then, the following system of linear equations is obtained.

Cl = O
€1+ 2¢c, =2 (40)
We can see that
€11 _ [0
] =[] (41)
So [a3]Bu is
0
[as]g =[] (42)

The same holds for the coefficient vectors of x4, x,, s; and s, as well.

1 Economic interpretation of the coordinate vectors in the optimal
simplex tableau

The optimal simplex tableau in Table 3 shows that 8 units of x; and 2 units of x;
should be produced to get 22 m.u. x, is a nonbasic variable which means that no unit
of x, should be produced.

Let y, be the coordinate vector of a, relative to the basis B” in the optimal simplex
tableau. So y, is
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2
Y2 = [_1/2] = [a,]pr (43)
and we can obtain a, by
ne 10 21_121_
By, = [1 2] [—1/2] - [1] = (44)
a, can be represented by a linear combination of a; and as;.
az = 2a1 - %a3 (4‘5)

(45) tells us how much more or less we should produce of x; and x5 if we want to
produce one unit of x,.

In the simplex algorithm basic variables can be represented by

xp = (B)'b — X ¢ly)lx (46)
where J is the set of the indices of the nonbasic variables [5]. Therefore, we can get
axB .
=Y (47)

where (—yj) shows the rate of change of the basic variables as a function of the
nonbasic variable x;. If we increase x; by one unit, the ith basic variable xg; should
be decreased by an amount y;;. This can be expressed by

axBi

= —Yij (48)

ax]-
Going back to Example 3, we have

axB

Y12 [ ]
ox, | V2T —}’22 1/2

(49) tells us that if we want to produce one unit of x, we should decrease the
production of x; by 2 units and increase the production of x5 by % unit. Substituting
these values for x4, x, and x5 in the constraints of Example 3, we see that

X, + 2x, <8=(8-2)+2-1=8
X+ X, +2x3 <122 (8-2)+142Q2+1/2) =12

(49)

(50)

are satisfied in equality. But if we substitute these values in the objective function we
see that

Zmax = 2%1 +x, +3x3=2(8—-2)+1-14+32+1/2) =41/2 m.u (51)

29



ISSN 2411-9563 (Print) European Journal of Social Sciences Sept - Dec 2018
ISSN 2312-8429 (Online) Education and Research Volume 5, Issue 3

gives us less profit than before. To make the same profit as before, we should increase
the marginal profit of x,. By using the trick z; = ¢; + (z; — ¢;) we can calculate how
much the new marginal profit of x, should be to make the same profit as before

zy=¢c+(z;,—¢c;) =1+3/2=5/2m.u. (52)

(52) tells us that the marginal profit should be 5/2 m.u. to make the same profit as
before because

Zmax = 2% +5/2x, +3x3 = 2(8 = 2) +5/2-1+3(2 + 1/2) = 22 m.u.
(53)

Conclusion

Every time the simplex algorithm calculates the next tableau, coefficient matrix of the
original standard problem is multiplied by the inverse of the basis matrix of the actual
tableau by using the formula B‘laj = y;. This paper shows that the next tableau can
be calculated by multiplying the transition matrix by the actual augmented matrix by
using the formula P~'y; = y/.

In each tableau, the coordinate vector of a variable gives us the coordinates relative
to the actual basis. In this paper, we made an economic interpretation of that
coordinate vector.
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