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Abstract 

An increasing number of researchers and analysts have formulated in the last decade innovative statistical equations for 
modelling and forecasting the volatility of financial returns. The evolution of technology and new software development have 
contributed positively to emerging economies, as well as in the improvement of market competition. We investigate in this 
study some experimental extensions of the multiplicative error model, which has been introduced by Engle (2002) for positive 
valued processes and it is specified as the product of a conditionally autoregressive scale factor and an innovation process 
with positive support. We use R 3.1.3  for the optimization, a modern software for statistical computing and graphics. Empirical 
analysis is carried out starting from May 2009 to January 2015. The equations fit fairly well the volatility of ‘STOXX Balkan 50 
Equal Weight’ Index, which represents leading blue chips from eight Balkan countries in terms of free-float market cap. The 
models seem to absorb completely the slow decay of the global autocorrelation function.  

  Keywords: Stock Market Data, Volatility, MEM models, Balkan stock index. 

      

1. Introduction 

The volatility process is associated with the conditional variance of financial returns over time. It is a subject to be taken 
into consideration while assessing the risk of an investment in financial assets. A relatively high level of volatility means 
that the corresponding asset price tends to large variations over time, therefore the investor can record high profits or high 
losses. The realized volatility is a positive valued process with a highly persistent temporal dependency, indicated by a slow 
hyperbolic decay of the autocorrelation function. Granger and Joyeux (1980) and Hosking (1981) suggest the use of 
fractionally integrated autoregressive moving average (ARFIMA) model in order to capture the long term persistence in 
time series of many fields. Engle and Russell (1998) propose a different method for the analysis of data which arrive at 
irregular interval such as financial transaction series. The authors define a new statistical model called autoregressive 
conditional duration (ACD), which can be considered part of  the generalized autoregressive conditional heteroskedasticity 
(GARCH) model, introduced by Bollerslev (1986). Engle (2002) extends the research suggesting the use of the 
multiplicative error model (MEM) for modelling  non-negative processes. This model specifies an error that is multiplied 
times the conditional expectation that follows a GARCH dynamic. Brownlees, Cipollini and Gallo (2011) focus on the 
different possible specifications of the persistence in the conditional mean using applications on the volatility of components 
of the S&P100 index, following the logic of Engle and Lee (1999). Cipollini, Engle and Gallo (2013) suggest an extension 
to the vector MEM model defined by Cipollini, Engle and Gallo (2006), where the conditional expectation is given as a 
function of its past and the conditional expectations of other variables. The authors follow a semiparametric method lacking 
the necessity of specifying the probabilistic distribution function or the particular copula function. Barigozzi, Brownlees, 
Gallo and Veredas (2014) expand the MEM model introduced by Engle (2002), decomposing the conditional expectation 
as the product of a systematic trend and an idiosyncratic dynamic component. This model, named SeminonParametric 
Vector MEM (SPvMEM), can be used to estimate panels of market activity, risk and liquidity measures.   

We suggest in this paper an interesting flexible MEM specification in which the process for realized volatility can be seen 
as a mixture of two Gamma MEMs with different coefficients for the conditional expectation and different shape parameters 
for the Gamma (De Luca and Gallo, 2007; Gallo and Otranto, 2014). We extend this framework even further adopting a  
mixed Gamma model for a MEM with fixed parameters which depend on the value of the past (Lanne, 2006; Ahoniemi and 
Lanne, 2013).  
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The paper is organized as follows. Section 2 establishes the notation by summarizing some of the features of the 
multiplicative error model.  Section 3 contains features of the equations and some empirical results illustrating the behaviour 
of the two MEM specifications for the realized volatility of ‘STOXX Balkan 50 Equal Weight’ Index. Section 4 concludes. 

 
2. Theoretical framework 

Let us consider tr  to be the daily log return at time t with negligible mean. We use a common indicator of volatility ty , the 

daily squared return.  The general structure of a multiplicative error model was outlined by Engle (2002) for realized volatility. 
A linear MEM(p,q) is given by: 

ttty   

where, conditionally to information 1tI : t  is a non-negative predictable process. The t evolution depends on a vector 

of unknown parameters θ, )( tt  . t  follows a distribution with nonnegative support, with mean 1 and unknown 

variance 2 . We have: 

1tt I ~ ),1( 2D . 

These definitions provide us: 

ttt IyE  )( 1
 

22

1)( ttt IyV 
 

In order to close the model, we adopt a density function for t  and specify an equation for the conditional mean
t . A 

common choice in many studies, is to use the exponential distribution, a particular case of the Gamma distribution. We 
have: 

1tt I ~ )/1,( Gamma , 

where  >0, 1)( 1 tt IE  and  /1)( 1 tt IV . The density function conditioned to the innovation t  is: 
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We can conclude that ty  follows a Gamma conditioned distribution 

                                                      1tt Iy ~ )/,(  tGamma  
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So, we have in this case: 
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With regards to t , we consider the simplest specification, the GARCH(p,q). 
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We estimate the parameters included in t , let’s call them θ. The log-likelihood function useful for the estimation is: 

                                          
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where c is an irrelevant constant to the estimation method  depending on Φ. We maximize the function with respect to θ: 
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We obtain the our estimators SMV



  using iterative procedures. We have: 
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The asymptotic distribution of the estimators under regularity conditions will be: 
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If order to verify the null hypothesis 0,0 : iiH   , we use the Student’s t test:  
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3. MEM equations and application 
Initially, we consider an interesting formulation of MEM models (Lanne, 2006; Ahoniemi and Lanne, 2013), where the 
innovation term

t follows a mixed gamma distribution with constant parameters. The innovation mean is unitary 

respecting the  establishment of the previous section. Let’s call ty  the realized volatility of a generic stock. We have: 

ttty  . 

The innovation is defined as follows: 
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where  10   and 
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The general form of the conditional mean equation is: 
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We consider also a model, belonging to the MEM family, with an innovation term distributed according to a mixture of 
Gamma with variable weights (De Luca and Gallo , 2007; Gallo and Otranto, 2014). The overall mean of the innovation 
term is always unitary. So, we have:  
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where 10  . We suppose that weights depend on their past and on the previous value of realized volatility: 
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Imposing the unitary mean constraint, we have: 
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We call the two models respectively, LANNE and DLG in our analysis. After defining the regression models, it is important 
to confirm the goodness of fit of the model and the statistical significance of the estimated parameters. In simple linear 
models the errors follow a normal distribution, but in some regressions based on mixture of distributions this hypothesis 
may not be valid. The method used in this paper is based on the so-called probability integral transformation of Rosenblatt 
(1952), which is a universally approach of transforming a set of dependent variables into independent uniform distributed 
variables. Dunn and Smyth (1996) define and apply the quantile residuals to regression models with independent 
responses.  

Let ),;( yF  be the cumulative distribution function of ),(  . If F is continuous, then the ),;( iyF  are 

uniformly distributed on the unit interval. The quantile residuals are defined by  
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where ()  is the cumulative distribution function of the standard normal. Quantile residuals are independent and follow 

a  standard normal distribution if the model is correctly specified and the parameters are consistently estimated.   
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We start with considering the realized volatility of ‘STOXX Balkan 50 Equal Weight’ Index, which represents the largest and 
most liquid companies across eight Balkan countries. The index covers 50 stocks from Bulgaria, Croatia, Greece, the 
Former Yugoslav Republic of Macedonia (FYROM), Romania, Serbia, Slovenia and Turkey. We consider the period from 
1st May 2009 to 30th January 2015. The time series of daily realized volatility has been built as the square root of realized 
variance. Figures 1 displays the plot of realized volatility. Figure 2 shows the estimated global autocorrelation function and 
partial autocorrelation function of realized volatility which exhibit a very slow decay, that is a long-memory pattern. 
 

 

Figure 1. Time series of  ‘STOXX Balkan 50 Equal Weight’ realized volatility. 

 

 

Figure 2. Global Autocorrelation Function and Partial Autocorrelation Function for ‘STOXX Balkan 50 Equal 
Weight’ realized volatility. 

We try to model the realized volatility series with both possible specifications of MEM models. Let’s see what happens with 
the LANNE specification. This is the conditional mean equation, where p = 2 and q = 1:                     
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112211   tttt yy  . 

We can see in the tables below the estimate, the standard error, the statistic test value and the observed p-value for each 
of the seven parameters. We simply observe the last column of the table where is calculated the p-value for the statistical 
test. We can fix a priori a p-value of 5% for acceptance of the null hypothesis. So, we accept ‘H0: The parameter is null’ if 
the observed p-value is greater than 5% and vice versa if it is less than 5%. As we can see from the table we refuse the 
null hypothesis in all cases, a positive indicator for the model evaluation.  
 

Parameter Estimation p-value 

  0.067 ~0 

1  

5.634 ~0 

1  
0.127 ~0 

11  
0.374 ~0 

11  
0.749 ~0 

2  
11.564 ~0 

2  

0.011 ~0 

21  
0.378 ~0 

21  

0.769 ~0 

   

 

Table 1. Parameters test, LANNE model. 

Let’s check now if the model is specified correctly or not using the quantile residuals method mentioned above. We have 
represented in figure 3 (from the left to the right) the quantile residual graph, the quantile-quantile graph (if the distribution 
approximates the normal standard one), the global autocorrelation (ACF) and the partial autocorrelation (PACF) of the 
quantile residuals and of the squared quantile residuals for LANNE model. We observe that the approximation is generally 
good.  
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Figure 3. Quantile residuals graphs, LANNE model. 

 
Let's try now to estimate the our time series through the other MEM formulation, the DLG one. This specification is a mixture 
of two Gamma MEMs with different coefficients for the conditional expectation. The equation for the conditional mean will 
be: 

112211   tttt yy   

We use the method of Maximum Likelihood (ML) to estimate the parameters of interest. 

Parametro Stima p-value 

1  
6.723 ~0 

2  
16.016 ~0 

  0.099 ~0 

1  
0.374 ~0 

2  
0.081 0.805 

1  
0.631 ~0 

0  0.905 ~0 

1  
0.983 ~0 

2  
17.106 ~0 

1  
0.419 ~0 

Table 2. Parameters test, DLG model. 
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As we can see from the table, we refuse the H0 hypothesis in all cases, except for 2 . The p-value in this case is greater 

than 5%, so we accept the null hypothesis that the coefficient is statistically equal to zero. We use even in this case the 
quantile residuals method. We check if residuals are independent and approximate the standard normal distribution. If this 
is true, the model is correctly specified and the parameters are consistently estimated. If not, quantile residuals are expected 
to exhibit different characteristics, i.e. dependence, autocorrelation or different distribution. 
 

 

Figure 4. Quantile residuals graphs, DLG model. 

We have represented in figure 4 the quantile residual graph, the quantile-quantile graph (if the distribution approximates 
the normal standard one), the global autocorrelation (ACF) and the partial autocorrelation (PACF) of the quantile residuals 
and of the squared quantile residuals for the estimated model. We observe that the points line up perfectly to the normal 
distribution. The global and partial autocorrelations are, in most cases, within the confidence bands. We conclude that the 
model is correctly specified and the estimates are consistent. 

Now we compare our models using well known selection criteria as AIC (Asymptotic Information Criterion; Akaike, 1974) 
and BIC (Bayesian Information Criterion; Schwarz, 1978). The first criterion, AIC, is defined as: 

, 

where  is the maximized value of the likelihood function for the estimated model, k is the number of parameters in the 

statistical model and T is the number of data points.  BIC is defined as: 

. 

We have presented in the table below the maximized value of the likelihood function, AIC and BIC for the estimated models. 
 

MEM Model lt AIC BIC 

LANNE -109,217 236,434 281,704 

DLG -71,638 163,276 213,576 

Table 3. Maximized value of the likelihood function, AIC and BIC criteria. 
 
Lower values of AIC and BIC, as well as higher values of the maximized value of the likelihood function correspond to the 
most fitting model and vice versa. In this case, we can conclude that DLG model fits better the corresponding data sample.  
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4. Concluding remarks 

We consider in this study two possible innovative equations for the realized volatility of financial returns, part of the 
multiplicative error models family, called LANNE and DLG respectively. We estimate and compare these models using 
some applications on ‘STOXX Balkan 50 Equal Weight’ Index, for the period from 1 May 2009 to 30 January 2015. The 
error term of LANNE equation follows a gamma distribution with constant parameters, whereas the error term of DLG 
equation is distributed according to a mixture of Gamma with variable weights.  
We compute the quantile residuals in R 3.1.3  software, in order to measure how well the specific MEM models fit the 
corresponding data sample. We observe positive signals of  independence and a satisfactory approximation of residuals to 
the standard normal distribution. This implies that the equations fit fairly well the volatility of ‘STOXX Balkan 50 Equal 
Weight’ Index, and the corresponding coefficients are consistently estimated. We also calculate the maximized value of 
the likelihood function,  and the AIC and BIC criteria for each model, concluding that DLG model fits better the data. This 
study can be enriched with supplemental analysis regarding other possible approaches of volatility estimation and other 
possible variables. Furthermore, we can test and compare these methods through the quantile residuals analysis, as well 
as through  forecasts.     
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