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Abstract 

Solitons are structurally stable solitary waves that propagate in a nonlinear 
medium. In this paper, solitons will be considered as the basis for solving many 
classical nonlinear equations of motion. Some classical solutions that were 
modeled through the application of Wolfram Mathematica System and MATLAB 
programming language. In this paper some soliton solutions will also be 
compared and some types of solitons were modeled.The dynamics of solitons 
was studied in consideration of  solutions of some equations, such as the 
Korteweg - de Vries equation and as a particular solution for the nonlinear 
Schrödinger equation provided that the nonlinearity parameter R>0 in the 
equation. We concluded by showing solitons in more detail which are often used 
in practice as a simpler method for explaining complex phenomena and solving 
non-classical equations 

Keywords: Soliton, Shrodinger non-linear equation, Korteweg–de Vries equation, 
optical soliton, soliton simulations․ 

 

Introduction 

 At present, the theory of solitons has embraced various branches of the natural sciences. 
Initially, they arose in the study of waves in water and in other problems of 
hydrodynamics [1, 2]. Afterwards, the solitons penetrated together with the 
hydrodynamic model into plasma physics and condensed matter physics. Later solitons 
and phenomena associated with them began to be studied in classical and quantum field 
theory and statistical mechanics. Solitons are also found in such areas as biophysics, 
nonlinear optics, etc. It must be emphasized that the study of solitons in nonlinear optics 
has been possible both theoretically and experimentally. 

 Most of the considered waves are in the group of monochromatic waves. But besides 
them, there is a wide group of waves, which are called solitary [1]. A good example of 
such a wave is the light pulse. Very often, a solitary wave is presented in the form of a 
wave packet, i.e., a linear superposition of a large number of monochromatic waves 
having frequencies close to the frequency of the carrier wave. Often, each of the 
components of a wave packet in space propagates with its own speed, i.e. there is a 
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velocity dispersion. This phenomenon leads to an increase in the width of the wave 
packet, i. e. the broadening of its dispersion [5]. The speed of the entire packet is called 
the group velocity, and the mediums in which the velocity dispersion is present are 
called dispersing. 

 In 1965, N. Zabuski and M. Kruskal discovered that solutions of the Korteweg – de Vries 
equation describing the propagation of solitary waves in shallow water have remarkable 
properties: they do not experience dispersive broadening and interact elastically, i.e. 
they retain their shape after collision and passage through each other [1, 2]. To 
emphasize the exceptional elementary nature of these solitary waves, they were given 
the name “soliton”. Solitons are defined as follows: this is a special type of nonlinear 
solitary waves (wave packets) that retain their shape and speed during their own motion 
and collisions with each other [1]. 

 As we know, intense high-frequency (HF) wave packets can propagate in nonlinear 
mediums without changing their shape, i.e. they are solitons. Soliton solutions arise in 
many topical problems in various fields of physics while modeling the propagation of 
intense waves in dispersive media. In physics, there are many types of solitons, such as 
dark solitons, light solitons, optical solitons, etc. 

Different types of solitons are particular solutions of many equations, such as the 
Korteweg – de Vries equation, the nonlinear Schrödinger equation with the condition 

that the nonlinearity parameter in the equation is R  0 , the Maxwell – Bloch system 
[4], the sine – Gordon equation, and so on. 

In this paper, we will consider some particular solutions of the above equations. These 
solutions can be presented in the following forms: one-soliton solutions, two-soliton 
solutions, and cases where the solution is optical solitons. All solutions are modeled and 
presented in the figures below. 

Тypes of solitons and their applications 

As we mentioned above, solitons are solutions of many equations in physics [1]. The 
below-discussed solitons are among the more widely used solutions of equations. In 
addition, they are o within the research scope of various fields of physics. 

Dark solitons  

As we already understood, a soliton is a wave traveling in a nonlinear medium by itself. 
A dark soliton is formed when this intensity locally decreases in a continuous wave of 
certain intensity[1, 5]. In other words, these are gaps in the wave, no matter how rough 
it sounds (fig. 1). 
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Fig. 1. Dark Soliton 

The frequency crests of the microcavity use the nonlinear Kerr effect in the integrated 
optical cavity to generate a variety of phase-frequency lines [1]. The interval between 
the lines can reach 100 GHz, which makes the system an excellent multi-wavelength light 
source for fiber-optic devices and systems. The dispersion of the microresonator affects 
the physical dynamics itself. Recent studies of the states of the frequency crest have 
demonstrated the formation of dark pulses in a microcavity with normal dispersion. This 
kind of "dark-impulse" ridges have become very popular among researchers because of 
their possible use in coherent communications due to the very high efficiency. 

Optical solitons 

Optical solitons are optical pulses that preserve the structural stability of the envelope 
when propagating in a nonlinear medium even in the presence of interfering factors and 
interactions with other solitons [2, 3]. Depending on the nature of the nonlinear 
interaction of radiation with matter, the soliton effects in optics are divided into 
resonant and non-resonant. In non-resonance media, optical solitons are formed as a 
result of the balance of two competing processes — dispersive spreading and nonlinear 
self-compression. The most favourable conditions for the formation of a soliton are 
realized in single-mode optical fibres due to extremely small optical losses and stability 
of the mode structure of the radiation with an increase in input power up to values close 
to the self-focusing threshold. 

The basis for an adequate mathematical description of the processes of formation and 
interaction of solitons in the picosecond range of durations is the nonlinear Schrödinger 
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equation, which corresponds to the complex amplitude of the field ( )A  ξ,  τ [1]. The 

envelope of a soliton pulse has the form ( ) ( ) iξ/2A ξ, τ sech τ e−= , where ξ - is the 

distance normalized to the dispersion length 
DL , ( ) 2

0τ 1 z / u / τ  = − −  is the running 

time normalized to the initial pulse duration, u  is the group velocity. Schrödinger 
nonlinear equation belongs to the class of integral nonlinear equations and is solved by 
the inverse scattering problem. If the power of a spectrally bounded pulse exceeds the 
critical power, then its asymptotic behaviour as ξ   →  is determined by the soliton 

component. The amplitude of the non-soliton part of the solution decreases. 

An important factor in the analytically calculated solutions of a nonlinear Schrödinger 
equation is N-soliton pulses corresponding to initial conditions of the form 

( ) ( )A 0, τ Nsech τ= , where N  is an integer. They are a nonlinear superposition of N  

moving with the same speed solitons with amplitudes ( )mA 2b 1 ,   b 1,  2,   N= − =  . 

Important features of N-soliton pulses are that their propagation begins with self-

compression, and the complex amplitude modulus is periodic in ξ  with a period π /  2 . 

Fundamental soliton  

As we have already mentioned, the bandwidth of fibre-optic communication lines is 
limited to non-linear effects and dispersion, changing the amplitude of the signals and 
their frequency [1]. But, on the other hand, the same nonlinearity and dispersion can 
lead to the creation of solitons, which retain their shape and other parameters 
substantially longer than anything else. An example of a laser that changes the refractive 
index inside an optical fiber as it spreads is vital enough, especially if a pulse of several 
watts is placed into a fiber thinner than a human hair. For comparison, we will clarify 
that a typical 9-watt energy-saving light bulb illuminates a desk, but is palm-sized at the 
same time. In general, we will not be far from reality assuming that the dependence of 
the refractive index on the pulse power inside the fiber will look as follows (1): 

 ( ) 0 1 1n P n n P,    n 0= +   (1) 

After physical reflections and mathematical transformations of varying complexity of 
amplitude a  of the electric field inside the fiber, one will get the equation of the form (2) 

 
2

22

2

1 a a
i N a a 0

2 x z

 
+ − =

 
 (2) 

where z and x coordinate along the propagation of the beam and transverse to it. The N 
coefficient plays an important role. It determines the relationship between dispersion 
and nonlinearity. If it is very small, then the last term in the formula can be thrown out 
due to the weakness of the nonlinearities. If the coefficient is very large, then the 
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nonlinearity, pressing on the dispersion, will single-handedly determine the features of 
signal propagation. So far, they tried to solve this equation only for integer values of N. 
So, for N = 1, the result is especially simple (3) : 

 ( ) ( ) ( )a x, z sech x exp iz / 2= −  (3) 

The function of the hyperbolic secant looks like an ordinary “bell”

 

Fig.2. The intensity distribution in the cross section of the laser beam in the form of a 
fundamental soliton 

and is called the fundamental soliton (fig. 2). The imaginary exponent determines the 
soliton distribution along the fiber axis. In practice, this all means that having shone on 
the wall, we would see a bright spot in the center, the intensity of which would quickly 
fall off at the edges. 

The fundamental soliton, like all solitons arising using lasers, has certain features. First, 
if the laser power is insufficient, it will not appear. Secondly, even if somewhere the fiber 
bends, the soliton passing through the damaged area will change, but will quickly return 
to its original parameters [1]. People and other living beings also fall under the definition 
of an autosoliton (the ability to return to a quiet state), which is important in nature. 

Second order soliton 

The Korteweg-de Vries Equation (KdV equation) describes the theory of water waves in 
shallow channels, such as a canal [1, 6]. It is a non-linear equation which exhibits special 
solutions, known as solitons, which are stable and do not disperse with time. 
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Furthermore there as solutions with more than one soliton which can move towards 
each other, interact and then emerge at the same speed with no change in shape (but 
with a time "lag" or "speed up"). 

 The form of Korteweg-de Vries Equation is shown below (4). 

 
3

3

u u u
6u

t x x

  
= −

  
 (4) 

The theory for solutions with more than one soliton is complicated and we will not 
discuss it, but rather just display a two-soliton solution, verify that it is indeed a solution, 
and look at its properties [6]. Specifying adequate resolution and number of time steps, 
my computer ran out of memory. 

 The theory states that an initial state (5) 

 ( ) ( ) ( )2u x,0 n n 1 sech x= − +  (5) 

results in n solitons that propagate with different velocities. The solution for n = 2 is (6) 

 ( )
( ) ( )

( ) ( )
2

3 4cosh 2x 8t cosh 4x 64t
u x, t 12

3cosh x 28t cosh 3x 36t

+ − + −
= −

 − + − 

 (6) 

It is not immediately evident that the above expression for u(x, t) satisfies the KdV 
equation, but Mathematica confirms that it does: 

 Next we plot the solution at time t = 1 in fig. 3: 

 

Fig. 3 KdV equation two soliton solution at   1 t =  

Other two soliton solution example is sine-Gordon equation [7, 8]. The sine-Gordon 
equation is a nonlinear hyperbolic partial differential equation in 1 + 1 dimensions 
involving the d'Alembert operator and the sine of the unknown function. There are two 
equivalent forms of the sine-Gordon equation. In the (real) space-time coordinates, 
denoted (x, t), the equation reads (7): 
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2 2

2 2

u u
sinu

x t

 
− =

 
 (7) 

where partial derivatives are denoted by subscripts. Passing to the light cone 
coordinates (u, v), akin to asymptotic coordinates where (8) 

 
x t x t

f ,   v
2 2

+ −
= =  (8) 

the equation takes the form (9): 

 ( )
2u

sin u
f  v


=

 
 (9) 

Multi-soliton solutions can be obtained through continued application of the Bäcklund 
transform to the 1-soliton solution, as prescribed by a Bianchi lattice relating the 
transformed results. The 2-soliton solutions of the sine-Gordon equation show some of 
the characteristic features of the solitons. The traveling sine-Gordon kinks and/or 
antikinks pass through each other as if perfectly permeable, and the only observed effect 
is a phase shift [5, 7]. Since the colliding solitons recover their velocity and shape such 
kind of interaction is called an elastic collision (fig. 4). 

 

Fig.4 Two solitons Kink-kink collision 

Third order soliton 

For sine-Gordon equation has three soliton solution. 3-soliton collisions between a 
traveling kink and a standing breather or a traveling antikink and a standing breather 
results in a phase shift of the standing breather. In the process of collision between a 
moving kink and a standing breather, the shift of the breather BΔ  is given by (10) [5]: 
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( )( )2 2

k

B
2

2arctanh( 1 ω 1 v
Δ

1 ω

− −
=

−
 (10) 

where 
kv is the velocity of the kink, and ω  is the breather's frequency. If the old position 

of the standing breather is 
0x , after the collision the new position will be 

0 Bx Δ+ (fig. 

5)[8]. 

 

Fig. 5 Moving kink standing breather collision 

Conclusion 

 In this paper, we considered different types of solitons as the basis for solving some 
nonlinear equations. Particular solutions of the following equations were presented: the 
non-linear Schrödinger equation, the sine-Gordon equation, and the Korteweg-de Vries 
equation. Monosoliton, two-soliton and three-soliton solutions were shown. In addition, 
the influence of the dark soliton on the wave and its significance in modern literature 
was shown. 

Using computer simulation, the behaviour of solitons in a nonlinear and dispersive 
medium was shown with a particular one-soliton solution of the Schrödinger equation. 

In addition to the above, the behaviour of a laser beam in the form of a fundamental 
soliton was modelled. In this paper, it was proved that solitons are one of the easiest 
ways to explain complex phenomena and solve non-classical equations. 
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