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Abstract 

Machine Learning as a phenomenon has gone viral, with many technologists and 
software vendors promoting it. However, offered tools remain highly technical 
and not accessible to those without rigorous training in Computer Science or 
Business Analytics. It would be more useful if end-users can understand it 
beyond the sales pitch or blind application, and perhaps, even work from scratch 
to build simple models without much additional training. With better 
assimilation and acceptance of this AI methodology as an acquired skill and not 
just head knowledge, many more may want to invest the intensive effort to learn 
the required tough mathematics and cryptic programming. Or, after simple trial 
explorations, be willing to put aside substantial budgets to employ skilled 
professionals for full-scale business application. With simplicity and accessibility 
in mind, this paper renders Neural Network, a key machine learning 
methodology, on the ubiquitous and easily comprehensible spreadsheet without 
macros or add-ins, employing only elementary operations and if so desired, 
optionally leveraging on its built-in Solver. We will show that backpropagation 
can be achieved using the elegant though obscure recursive computation feature, 
with no need for Solver. We will demonstrate the application of neural network 
on a familiar problem: early and prior prediction of students’ graduation GPA. 
The paper can be used to form the core content for introducing machine learning 
to non-technical audiences, particularly those majoring in Business and the 
Social Sciences. 

Keywords:  machine learning, neural network, business analytics, spreadsheets, 
education, higher education, experiential learning 

 

1. Introduction 

Machine Learning is garnering lots of attention recently in academia as well as in the 
public media and businesses. Many technologists and software vendors are promoting 
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aspects of Machine Learning, particularly Artificial Neural Network (NN) and Deep 
Learning. Though NN has been around since the 1950s and is thus not entirely new, its 
resurgence is largely due to the broad-scale, high-speed, and low cost of computation, 
wireless communications, and the massive availability of live data arising from the 
Internet and smartphone usage, relative to earlier days of conception. As a result, billions 
of dollars of investments by vendors and users alike are going into NN development and 
application. 

The original Coursera Machine Learning (ML) course by Ng (2017) has been immensely 
popular, with 1.7 million enrollments since the course began in 2012 and many more 
people continue to take it via Coursera (or watch the lecture recordings through 
YouTube), to learn the basic concepts and techniques in ML (supervised and 
unsupervised learning, neural network, support vector machines and clustering), 
underlying statistical techniques (single and multiple linear and logistic regressions) 
and mathematics (linear algebra, forward propagation and backpropagation, gradient 
descent optimization and data parallelization), software tools (Octave), practical project 
ideas (regularization, validation, development strategies, dimensionality reduction, data 
normalization and visualization), and application (anomaly detection, recommender 
systems and image recognition). 

As the onerous list of related topics above suggests, this is a highly technical course 
catered for scientists and engineers, though learners are already spared from R or 
Python programming languages and associated TensorFlow and other libraries. The 
inherent knowledge, skills, and tools offered by software vendors remain highly 
technical and not accessible to people without training in Computer Science or Business 
Analytics. Machine Learning would only become broadly used if the average business 
executive, non-technical undergraduate or even high-school student could understand 
it, sans complex mathematics or vague sales pitch. It would be helpful if learners could 
simply interact with Machine Learning itself, figuratively and from applied 
fundamentals, starting with building simple models and not just blind application, as is 
the common practice of imparting programming and subsequently machine learning 
skills. 

The idea of such a teaching technique rests upon pedagogical processes that inculcate 
the acquiring of skills through a mediated form of practice, rather than simply through 
verbal instruction of theoretical constructs. The idea of “learning through doing” has 
been observed in many early civilizations, largely in the form of the master-apprentice 
relationship, and has in modern times been distilled to what is known as the Experiential 
Learning Theory (ELT). Kolb (2015) is one of the proponents of this model, which 
emphasizes the four cyclical stages of Concrete Experience, Reflective Observation, 
Abstract Conceptualization, and Active Experimentation; the student should repeat the 
processes ad infineum in the continuous process of learning. The use of such a model in 
university teaching has been documented by Leong & Ma (2019), in which case studies 
have shown the deeper levels of understanding from students who have been exposed 
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to this process of learning, as compared to the common process of imparting of expert 
knowledge or opinion. The same model also expounds on the relation of academic 
disciplines as “crafts”, and can be deconstructed into the “object” of the craft, the 
“objective” or goal, and the “skill” required to manipulate the “object” to the “objective”. 
Interestingly, this also turns out to be a qualitative depiction of what NN and ML achieve. 

With better assimilation and acceptance of the NN methodology as an acquired skill and 
not just head knowledge or a black-box, many more may want to spend the intensive 
effort to learn the required but tough mathematics and cryptic programming, or, after 
trial application explorations, be willing to put aside substantial budget to employ skilled 
people to apply them to challenging settings. As the history of AI applications informs us, 
particularly in medicine, unless end-users can understand, accept and trust it, all abilities 
deemed “better than human experts”, however well-proven, verified and validated, 
would come to naught.  

Therefore, with simplicity and accessibility in mind, this paper attempts to show how 
NN, a key machine learning methodology, can be rendered on ubiquitous and more 
comprehensible off-the-shelf spreadsheet applications, directly without macros or add-
ins, employing the SUMPRODUCT function for forward-propagation and, if so desired, 
optionally leveraging the built-in Solver to do gradient descent to optimize the objective 
function. We will demonstrate the application of NN using spreadsheets on a problem 
familiar to most institutes of higher learning: early prediction of students’ graduation 
grade point average (GPA) from a basket of factors.  

Our paper’s key contribution is to show non-technical users more comprehensively what 
NN is and how to more simply do it, and refresh upon the efforts of others to promote 
the use of spreadsheets as a tool for learning and applying basic NN concepts. In 
particular, the paper’s novelty is our use of the elegant, though obscure, recursive 
computation spreadsheet feature and so do away with the need for Solver. Despite the 
desired exclusion, Solver’s use for NN is still thoroughly explained and demonstrated in 
the paper as it would be handy to those who cannot fully understand or accept recursive 
computation. The detailed demonstration seeks to allay users’ fears of complex 
mathematics, technical programming, and the like, and approach the building of a NN 
system using an applied and practical perspective, in particular the ELT approach. 

The rest of the paper is organized as follows: Section 2 contrasts our approach against 
related efforts by other authors, and Section 3 explains the base model for predicting a 
continuous dependent (or output) variable from multiple continuous independent (or 
input) variables. Next, Section 4 shows how backpropagation could be done fairly 
simply, by exploiting the recursive computation explained prior, and finally, Section 5 
summarizes the results. The paper ends with a broad discussion on research motivation 
and future work, to introduce machine learning to non-technical students, particularly 
those majoring in Business and the Social Sciences. 
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2.  Related Work and Literature Review 

This paper is part of a series of efforts over the years by the lead author and collaborators 
to promote the use of spreadsheets as a viable means for the less mathematically- and 
technically-inclined, in order to explore realistic business scenarios and resolve them, 
without use of add-ins or macro programming. Problems addressed to date include 
multi-server queues (Leong 2007a), and data resampling and Monte-Carlo simulation 
(Leong 2007b, Leong & Lee 2008). NN spreadsheet models may not be suitable for large-
scale application but would suffice for teaching machine learning and for preliminary 
exploratory analysis with less data, prior to embarking on enterprise-level 
implementation, by which time would involve project teams with capable data scientists 
and large amounts of data.  

There are multiple practical reasons for using spreadsheets (Leong & Cheong 2008). 
Briefly, spreadsheets permit people with basic mathematical skills and no programming 
abilities to perform highly elaborate modeling of business challenges by making 
algebraic, statistical and probabilistic computations to appear arithmetic. Its interface is 
simple and highly interactive, plus its ubiquitous presence in offices, led many analysts 
to consider it as the tool of choice for exploring business opportunities.  

With many educators, especially in universities, adopting spreadsheets as their main 
computing platform to support teaching of business mathematics, statistics, and 
management science courses, not to mention its common use among students, graduates 
can now more easily apply spreadsheets for quick data analysis, as well as for 
understanding approaches to formation of complex solutions. Even people without 
formal training and only direct experience with spreadsheets can pick up advanced 
modeling techniques (Leong & Cheong 2008, 2015). Therefore, the primary key 
advantage of using spreadsheets is that it would allow a wider end-user audience to 
experience first-hand what machine learning actually is and how applications may be 
easily constructed and flexibly adapted for use.  

There appears to be few academic papers on using spreadsheets to apply machine 
learning. In fact, Sarkar et al (2015) lament the lack of tools accessible to non-experts 
and offered BrainCel, a visual interface system for performing machine learning in a 
spreadsheet-like environment to do clustering. BrainCel is user-friendly as a machine 
learning system but it insulates users from the logical processes. Similarly, Koong, Mcgee 
& Leong (2010) presented a tutorial software application for imparting NN knowledge 
to less technically inclined students. These used propriety software and, unlike standard 
spreadsheets such as Excel, require much training that could go to waste if and when 
their platforms do not stand the test of time. 

Werbos (1988), who pioneered backpropagation in NN and demonstrated its use in a 
spreadsheet, employed macros to cycle through the iterations so as not to involve avoid 
having numerous rows to store the weights in each step. Rienzo and Athappilly (2012) 
shares our enthusiasm in applying spreadsheets to NN but in avoiding macros, could 
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only work on small problems that required no more than 4 iterations. Semerikov et. al 
(2019) addresses the multi-classification of Iris botanical types using spreadsheets and 
applied Solver to determine the weights. Kendrick, Mercado, and Amman (2006) in 
chapter 2 of their textbook applied Solver in their NN spreadsheet to forecast stock 
prices, calling it a “grey-box” concept.  

There are some useful articles by professionals on web forums and blogs that address 
the use of spreadsheets for machine learning. However, they cover only base level 
statistical analysis approaches such as Linear Regression and Logistic Regression. For 
example, Granville (2017) uses complex array functions (i.e., CORREL, COVAR and 
LINEST). This approach makes the models opaque, as users cannot see how the detailed 
computations are done. Still others like Roberts (2018) introduced the use of the PyXLL 
Add-in that embeds Python in Excel to extend the spreadsheet’s functionality to take 
advantage of the Python ecosystem. Smith (2018) adopts a play-learning approach to 
apply Excel to NN, as a “Skynet” game and Ekman (2019) applies spreadsheet macros to 
do backpropagation. Finally, more focus should be given to NN applications in business 
and for this, we refer the reader to the literature review and analysis paper by Wong, 
Bodnovich, and Selvi (1997). 

3.  Base Model 

The basic idea behind machine learning is to be able to understand how a set of 
independent variables (X1, X2… Xn) relates to a dependent variable (Y). To illustrate, we 
may let Y, the variable to predicted, be a student’s result in an English test, and X1 may 
be the number of hours the student studied, X2 the hours slept the night prior to the test, 
and so on. What machine learning aims to achieve in this scenario would be to predict 
the value of Y, given the X variables’ values of a particular student, before the actual test 
is conducted, through the assignment of weights to each variable and the corresponding 
mathematical relationship (both of which are computed through the learning process). 
The choice of X variables is therefore important for proper forming of the relationships 
between the chosen X variable and the correlation to the Y variable. In a basket of chosen 
X variables – e.g., students’ weight, height, gender, or results in their past English or Math 
tests – we may also find that there are different weights to each variable, and relationship 
between the independent and dependent variables; sometimes unexpected, and in 
varying degrees.  

Now if we have access to a set of data from past years’ students, we may then be able to 
find a function (F) to fit the multiple Xs to Y. The output of F(X1… Xn) using the given 
data, and after the algorithm has been formed, should give a value as close as possible to 
the actual Y. In Statistics and NN, we use linear functions as follows:  

 YP = F(X1… Xn) = W0 + W1 * X1 + W2 * X2 + … + Wn * Xn  (1) 

where YP is the predicted value of Y and weights W0, W1, …, Wn are constants to be 
determined as part of the algorithm. In the single X variable case, W0 is the Y-intercept 
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and W1 is the slope. As the variables may be quite different in magnitudes from one 
another, the data need to be normalized and re-scaled -this is assumed done prior to any 
computation, and detailed discussion is left for later. 

The analysis thus far is called “Linear Regression”. NN expands on this idea, using 
concurrent multiple copies of this function (shown schematically in Figure 1). 
Furthermore, beyond continuous variables, NN also deals with categorical variables. To 
avoid complex mathematics, we will explain this in practical terms using spreadsheets. 

  

Figure 1: Neural Network Schematic 

The final function of Y can be thought of simply as a weighted sum (or function) of the 
various X variables. With the final function, we compute the YP value for each data point 
and compare it against its Y value. For goodness of fit, it is easiest to use Mean Absolute 
Error, the average of absolute values of YP minus Y. The W values, initialized usually with 
random values, are also tuned to improve the fit. The function with weights being 
improved is thus learning from the data. In NN, this is termed “supervised learning” since 
there exist Y values in the given data that can be used to compare against the YP values 
and thereby improve the function. “Unsupervised learning”, in which the outcome (Y) 
value or variable is not known, will not be discussed further in this paper. (Do note that 
the Computer Science community may use a different nomenclature from 
mathematicians; notably that variables are referred to as features and formula (1) above 
as forward propagation.) 

We can use spreadsheets to illustrate the process of determining this function of Y 
respect to X. To do so, we first examine the NN Predict GPA spreadsheet model (see 
Figure 2). This model tries to predict students’ graduation GPA from the grade points of 
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seven pre-selected courses (indicated in the table header as C01-C07). These courses 
were specifically chosen because they are taken early in the students’ academic 
programme and their students’ grade point values in these courses singly correlate to 
the GPA better than other level 1 or 2 courses (typically taken in their first two years of 
a four-year undergraduate course). The data values involved are all continuous and the 
variables’ minimum and maximum possible values are the same, thus well behaved. 

Figure 2: NN Predict GPA (2-layer; using Solver) 

Cells E5:L5 contain the weights for computing variable Z1 from constant X0 (value 1) 
and variables X1 to X7. Z1 (in cell N15) is given by the formula: 

 =SUMPRODUCT($E$5:$L$5, $E15:$L15)    
 (2) 

Similarly, cells E6:L6 contain the weights for computing Z2. Z2 (in cell O15) is given by: 

  =SUMPRODUCT($E$6:$L$6, $E15:$L15)    
 (3) 

and so on, each time using the weights in the next row. Therefore, variables Z1 to Z4 are 
weighted sums of X0 to X7; and with X0 equals 1, its associated weight W0 is the bias. 
These formulas are copied down from row 12 to other rows to cover other input 
instances. 

Incidentally, output variable Z1’s formula above would be the same as that for predicted 
output YP of a 1-layer NN (i.e., with no hidden layers) and only the weights in E5:L5 are 
pertinent. Now for the 2-layer NN, variables Z0 to Z4 constitute the hidden layer where 
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Z0 like X0 equals to 1. The second and last layer gives the predicted output variable YP 
(in cell S15) is computed from Z0 to Z4 (in cells M15:Q15) as follows:  

 =SUMPRODUCT(M$5:Q$5, M15:Q15)     (4) 

We reproduce a copy of this YP in cell C15 at the far left of the spreadsheet model, using 
formula =S15, to facilitate easy comparison with the actual Y in cell D15. And for the 
same reason, at the far right, cell R15 (with formula = S15−D15) shows the prediction 
error.  

Instead of having numerous SUMPRODUCT formulas in cells N15:Q49, we can 
alternatively use one array formula {=MMULT(E15:L49,TRANSPOSE(E5:L8))}. This 
array formula approach is not recommended because array functions MMULT and 
TRANSPOSE made the model inflexible: difficult to add more training data or modify the 
NN’s structure, say deleting columns to remove weak variables. Further explanations 
explanations on the use of the $ sign in cell references, and function SUMPRODUCT, and 
array functions TRANSPOSE and MMULT are included in the Appendix. 

To expand the model with more layers, hidden layers can be inserted and SUMPRODUCT 
formulas applied similarly, by treating each preceding hidden column’s Z’s as if they are 
X’s. Having many layers and inclusion of more complex structures give rise to what is 
known as “Deep Learning” in NN. In all NN, the learning comes from progressively 
adjusting the weights in response to feedback errors, thereby improving predictability. 
An easy approach to do this is to use Solver: minimize cell B5 by changing E5:L8 and 
M5:Q5, where the Mean Absolute Error (MAE) objective or loss function in cell B5 is 
given by array formula: 

 {=SUM(ABS(R15:R39))/COUNT(R15:R39)}     (5a) 

where R15:R39 contains the prediction errors for the training data. That is, errors of the 
test data in rows 40 to 49 are excluded. 

Solver’s GRG Nonlinear Solving Method used is the vendor-enhanced version of the 
Generalized Reduced Gradient (GRG2) code developed by Leon Lasdon and Alan Waren. 
We have started to apply array formulas (not the same as array functions). Though often 
unfamiliar to casual spreadsheet users, array formulas are simpler than array functions 
(see Appendix). 

Formula (5a) computes the average of the absolute magnitude of errors between the 
actual and predicted dependent variable values. We have chosen MAE because it gives 
equal weightage to errors regardless of error size and is thus easier for end-users to 
understand. The objective function enhanced by adding a regularization term is as 
follows: 

 =SUM(ABS(R15:R39))/COUNT(R15:R39) 

 + B12*SUM(ABS(F5:L8),ABS(N5:Q5))/COUNT(F5:L8,N5:Q5)  (5b) 
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where cell B12 holds regularization rate and cells F5:L8 and N5:Q5 contain weight values 
less the bias terms. This rate should be adjusted to influence magnitudes of the weights 
and thereby moderate over-fitting and bias issues. Formulas for key cells of the 
completed model are summarized in Figure 3. 

 

Figure 3: Formulas of key cells in the NN Predict GPA 

4.  Results 

An illustrative explanation to the model is to treat each Z value as the score given by an 
expert evaluator, computed by taking a weighted sum of independent variables’ values. 
These expert-specific weights are based on individual evaluator’s “subjective judgment”. 
In turn, a weighted sum of the experts’ scores can be taken as the score of an expert 
panel. There can be more than one of such panels, and then in turn, weighted average of 
panel scores can be taken to give an expert committee’s score, and so on. Each time, a 
hidden layer is added to the NN in an attempt to make it more robust. 

Often only a simple NN model with 1 or few hidden layers, with each layer having few 
variables, is needed. In its simplest, with no hidden layers, the NN model is the same as 
linear regression. We can put the linear regression model into effect by setting irrelevant 
X and Z weights (cells E5:L8, M5 and O5:Q5) to 0, and weight of Z1 (cell N5) to 1, after 
which Solver only needs to change cells E5:L5 to get the local optimal solution for the 
weights. 

In our model, we have split the data into two mutually exclusive sets: the training set and 
the testing set. As per usual machine learning practice, the training data is used to build 
the model by calibrating weights, while the testing data (where the weights, obtained 
from the training data, are held constant) checks how well the model performs. More 
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clearly, the testing data cannot be involved in tuning the weights. If actual outputs are 
known, especially soon after prediction rather 4 years later upon student graduation, the 
weights can be updated continually, as each data point is being introduced, allowing 
early discovery of prediction errors which may influence future predictions. 

  

 

Figure 4: NN Predict GPA Results (using Early Course Grades) 

The results (Figures 2 and 4) show that the NN model can predict the GPA with high 
levels of accuracy, with training and testing MAE of 0.13 and 0.18 respectively for the 
data set. This means that the weights that have been tuned can fit the model to give an 
average deviation from actual GPAs by 0.13 grade points. When model is applied to data 
outside the training set, it is expected to do slightly worse and the average deviation is 
now 0.18 grade points. (i.e. if the model predicts that a student GPA is 4.0, then on the 
average it is wrong by ±0.18, or that the actual grades are likely in the 3.82 to 4.18 range.) 

In an actual problem, the use of pre-admission variables such as demographics (race and 
gender), education track (academic junior college or technical polytechnics) and other 
educational priors (high school English or Mathematics results; admission screening test 
scores). Some variables are binary (e.g., female = 0, male = 1; junior college = 0, 
polytechnic = 1) while others are categorical, both ordinal and non-ordinal. Non-ordinals 
would be converted to many binary variables, one for each category, while ordinals may 
be treated as rounded continuous variables. 

When input data are of different magnitudes, pre-processing is required to normalize 
and rescale them. In this case, we make all variables to be in [0,1] range as follows: 
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 Normalized and rescaled X = (X − Xlow)/(Xhigh − Xlow)   
 (6a) 

where Xlow and Xhigh are the lowest and highest possible data values respectively of 
the variable. 

If Xlow and Xhigh are infinitely small or large, we use instead: 

 Normalized and rescaled X = (X − Xmean)/(6 × Xstdev) + 0.5   (6b) 

where Xmean and Xstdev are the estimated mean and standard deviation of the 
population.  

In applying the model, caution should be taken here that, for both formulae (6a) and 
(6b), the Xlow, Xhigh, Xmean and Xstdev should not be changed once decided. They 
should apply to all data and not dynamically changed as more data is added to the 
training set. This may pose limitations if the initial training set is not representative of 
the general range of values, and is therefore a reminder that the data used in both the 
training and testing sets should firstly be of a significant volume, and secondly, 
representative of the actual situation.  

By adapting the model in Figure 1, replacing the 7 course grade points with 7 other 
demographic and prior education variables (with the input data normalized and 
rescaled) and then further pruned the variables to get better results (Figures 5 and 6). 
As the results show, the model fit now is not as good and is predictably significantly 
worse. We also eliminated variables found to be weak for prediction (by deleting their 
weights and excluding them from the “By changing cells” input field in Solver). Overall, 
it seems pointless to include any of these 7 new variables to the earlier 7 to give a better 
model. We may then conclude that these seven newer variables are not as strong 
indicators of the final predicted value as the earlier seven course grade points – at this 
point, note that we cannot yet say that they have no influence whatsoever, only that they 
are considerably weaker than the initial seven course grade points. 
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Figure 5: NN Predict GPA (using Demographics and Education priors) 

  

 

Figure 6: NN Predict GPA Results (with Demographics and Education Priors) 

5.  Simpler Approach to NN and ML – An Illustrative Explanation 

For learners in business and social science majors, weights can be analogous to prices, 
predicted output(s) to supply, actual (or required) output(s) to demand, and the 
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objective function as an overall measure of the extent supply exceeds demand. For the 
purpose of modelling, prices can initially be set to random values, with a small increase 
in price (analogous to the learning rate), one at a time, to see how the objective function 
change, and subsequently increase or decrease that price by the small amount to reduce 
the objective function value.  

With many such prices, we can also at each iteration change all of them simultaneously, 
although preferably after we have understood how each individual price change impacts 
the objective function. The algorithm ends when the objective function value cannot be 
reasonably reduced further with price changes. The price changes at each iteration have 
to be small, especially if simultaneously changed. Otherwise, the algorithm may not 
converge and the prices may just be cycling up and down. To get better results and faster 
convergence, we moderate the price changes to be progressively smaller with each 
iteration, instead of having constant very small price change sizes. With relatively larger 
price changes at the beginning, the objective function value would generally drift 
downwards though cycling up and down slightly. This process can of course be 
automated using Solver. 

Machine learning in general employs a technique called backpropagation to optimize the 
NN model. Backpropagation computes the partial derivatives for each of the weighted 
variables, which is the gradient associated to the objective function value change with a 
small change in a weight. This allows us to adjust weights incrementally using gradient 
descent, which is identical to the optima obtaining process mentioned, but can be 
considered a myopic optimization heuristic.  

Since MAE is not differentiable, the underlying objective function used is the Mean 
Square Error (MSE), as given in place formula (5a) by array formula: 

 {=SUM((R15:R39)^2)/COUNT(R15:R39)}     
 (7) 

where cells R15:R39 contain the prediction errors.  

The key criticism of MSE is that by squaring it gives too much emphasis to large errors 
and thus also difficult for non-technical people to interpret. We therefore retain MAE as 
the key prediction performance measure. 

It can be quite challenging to show the partial derivatives’ formulas for NN models with 
hidden layer(s), and therefore this approach would seem tedious even in a spreadsheet 
and often involved macro programming. We had therefore used Solver to support end-
users who may not want to deal with the complexity and algorithms involved. However, 
we will next show that by using recursive computation, backpropagation is not as 
difficult as some make it out to be. 
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Taking the base NN model in Figure 1, one can render it with no hidden layers (Figure 
7). The predicted output variable YP (in cell N15) is now a weighted sum of the 
independent variable values, given by as in earlier explained formula (2): 

 =SUMPRODUCT(E$5:L$5, E15:L15)     (2) 

where E5:L5 contains the current weights. Separately, we set up cells E6:L6 to keep the 
next iteration’s weights. The formula for cell E5 is then: 

 =IF($D$12="No",RAND(),E6)      (8) 

where Iteration Start indicator in cell D12 initially contains “No” and thus initialize 
current weights to random values.  

 

Figure 7: NN Predict GPA (1-layer; using Backpropagation) 

Cell E6 will then update the current weight in cell E5 using array formula: 

 {=E5−$C$12*(SUM(E15:E39*$M15:$M39)−$B$12*E5)/COUNT($M15:$M39)}
          
 (9) 

where C12 is the learning rate and the SUM(…) term is the weight gradient. Copying cells 
E5:E6 to the rest of the columns completes the computations for other weights. 

We can then activate Excel’s iteration calculation feature (in the Calculation Option) and 
then change Start to “Yes” to set the recursive action between E5:L5 and E6:L6. The 
recursion stops when number of iterations reaches 100 or difference between 
successive computed values are not more than 0.001, where these values 100 and 0.001 
being the two defaults limits given by Excel. For the GPA prediction scenario examined, 
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the initial training and testing MAE respective results of 0.17 and 0.23 did not attain the 
0.14 and 0.16 results earlier found with Solver. However, these results improved to 0.14 
and 0.16 respectively when the “Maximum iterations” is increased to 10,000 and 
“Maximum change” decreased to 0.00001. This is in line with the idea in Machine 
Learning that by increasing the number of layers and/or iterations, the computed 
function then produces a result that is more accurate to that of actuality. 

With the 1-layer backpropagation process clarified, we will attempt to expand this to as 
many layers as desired. Backpropagation, as commonly termed in Machine Learning, is 
called such because the 1-layer approach had been shown (arising from the Chain Rule 
in mathematical differentiation) to be applicable to multi-layer models simply by 
working backwards from the last layer, one layer at a time. Each examined layer’s input 
values are those which are forward-propagated (taking weighted sums) from preceding 
layers and error values backward-propagated (taking weighted sums, interestingly 
using the same weights) from the proceeding layer, with the last layer obtaining errors 
from the difference between predicted and actual output values. 

 Thus, each of the examined layer’s input weights’ gradients takes the same form as the 
SUM term in the earlier formula (9): averaging over all input values instances multiplied 
by their error term. Mathematical formulae involved can be quite onerous, but if done 
properly, spreadsheet portrayals are simple. The 2-layer NN backpropagation model 
using recursive computation is shown in Figure 8. As in the 1-layer model, there are two 
copies of all weights: current and next iteration. There are additional tables for error 
terms: one column each for hidden and final layers’ output variables. 

Figure 8: NN Predict GPA (2-layer; using Backpropagation) 

The formula for YP error (in cell V18), the difference between YP and Y, is given by: 

 =W18−D18         (10) 
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The YP errors, which are the differences between YP and Y (in cells V18:V42, Figure 8), 
are a major component in the partial derivative computations, as shown in the SUM term 
in formula (9) in the 1-layer NN case. In the 2-layer case, by backpropagation, it appears 
in the formula for the next weights associated with the hidden layer’s variables.  

The formula for next weight for Z0 (in cell Q6, Figure 8) is:  

 {=Q5−$C$15*(SUM(Q$18:Q$42*$V$18:$V$42)−$B$15*Q5) 

 /COUNT($V$18:$V$42)}      
 (11) 

and it retains the structure of formula (9). This process can be repeated for all hidden 
variables’ associated weights. 

The YP error is backpropagated to give the Z1 error (in cell M18, Figure 8) using formula: 

 =R$5 * $V18        (12) 

where R5 is the weight that linked Z1 to YP, and similarly we can compute the errors for 
Z2 to Z4.  

The hidden layer errors Z1 to Z4 (in cells M18:P42, Figure 8) collectively is used in the 
computation of the weight gradients for the Xs and thus the formula for next weight for 
X0 (in cell E9, Figure 8) is 

 {=E5−$C$15*(SUM(E$18:E$42*$M$18:$M$42)−$B$15*E5) 

 /COUNT($M$18:$M$42)}      
 (13) 

This process can be repeated using for input variables’ associated weights.  

For completeness, all the key formulas for the 2-layer NN are given in Figure 9 below.  
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Figure 9: Formulas of key cells in the NN Predict (2-layer; using Backpropagation) 

7.  Discussion and Further Research 

Conventionally, fixed but possibly differing weights are used to combine attributes and 
scores into evaluation scores, e.g. in student admissions. It is also plausible if for some 
reasons the weights used were forgotten and we want to reproduce them using only past 
record of applicants data and evaluation scores or if, in addition to evaluation scores, 
admission committee members also apply subjective judgments in granting admission 
(individually or otherwise). In any of these cases, we can easily apply linear regression 
and machine learning to determine the forgotten and implied weights.  

Where there are sufficient data and with concurrence of academic administration, the 
admission decision process may even be largely automated by machine learning, and 
eliminate the need for admission committees to exhaustively review all but only 
randomly sampled cases, needed to refresh the weights. Of course, exception cases still 
need the attention of human decision-makers, particularly so if the consideration 
requires a qualitative measure of judgment, or is of a feature not easily quantified. 

Another motivation of our work is to be able to apply the approach to Recognition of 
Prior Learning (RPL), specifically to help mature students with poor or no high school 
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education gain admission in undergraduate study programs. With some requirements 
and in lieu of others, universities can allow adult learners to take a small set of pre-
specified courses pre-admission and use their aggregated results (with validation 
support from NN analytics illustrated in this paper) as supporting evidence for 
admission or even credit recognition. With these scenarios in mind, this paper had 
focused on the NN model with one continuous output variable and pre-selected 
structures.  

In the interests of machine learning instruction, and particularly for those who are more 
technically inclined, these spreadsheets and the related concepts such as recalibration 
of the weights and the inclusion of additional variables can be used to formulate tutorial 
exercises or study projects. The key goal in this paper, however, is to find the simplest 
possible model that performs better than required. In light of that principle, objective 
function results should be carefully recorded and plotted against parameter values, 
number of hidden variables and number of hidden layers. This documentation would 
inform us at which value incremental changes would only bring marginal or no further 
benefit.  

Proposed future work to this study includes a follow-up paper on categorical single and 
multiple output variables, namely in the domain of binary classification and multi-
classification. With the simpler approach toward machine learning and neural networks 
using spreadsheets, we hope to bring even more techniques in the stable of machine 
learning to our classroom, including Clustering, and Decision Trees. 
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APPENDIX 

Brief explanations of selected spreadsheet topics are provided here for easy reference 
on some salient but unfamiliar features. Further notes on the use of spreadsheet features 
and functions for modeling can be found in Appendix A of Leong & Cheong (2015). 

Cell Referencing 

To speed up model building, formulas in some cells are often copied over to other cells. 
A leading cell in a top row of a table (below the header) may be copied over to cells in 
the same row but other columns right of it to complete of a series of similar cells, with 
some adjustments made where needed. The whole top row of the table is then copied 
(or filled) down to complete the table. 

When copied to another cell, simple (i.e., relatively referenced; no $ signs) cell references 
in formulas would be changed by exactly the number of rows and number of columns 
that separates the source and destination cells. For example, if the destination cell is 3 
rows down and 2 columns right of the origin cell, a C7 in the first cell will become E10 in 
the second cell. 

Cell references can be prevented from changing when copied into another cell by using 
the $ sign. To disallow column change, just prefix $ to the column letter in the cell 
reference, and to disallow row change, do the same to the row number. You can also do 
both concurrently.  

Staying with the illustrative example, (absolutely referenced) $C$7 in the origin cell 
would remain as $C$7 in the destination cell; (mixed referenced) $C7 would only have 
its row number changed in the destination cell as $C10; and (mixed referenced) C$7 
would have its column changed in the destination cell formula as E$7. 

SUMPRODUCT (array1, array2, [array3, …, array_n]) 

This function that multiplies ranges of cells (otherwise, also known as arrays) and 
returns the sum of their products. These arrays are either columns or rows of values. It 
multiplies the first value in the first array to the first value in the second array, the second 
value with the other second value and so on, and then adds all these values to give the 
output.  

Logically, there must be at least two arrays. If there are more arrays, then the same logic 
applies with all the first values multiplied together, second values multiplied together 
and so on, and then summed. All arrays must naturally have the same number of values. 
Not numeric array entries are treated as zeros. 
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Array Formulas 

Array formulas are entered with SHIFT + CTRL + ENTER, instead of the usual ENTER key 
and would be displayed with the distinctive { } brackets. Array formulas may or may not 
involve array functions. Array formulas as so called because they involve computations 
with arrays and at times even return array outputs.  

Many interesting computations can be done using array formulas, giving spreadsheet 
models that are more compact and easier to comprehend. 

Example 1. Find the mean absolute error between the actual and predicted values of a 
variable, as in cell B5 of Figure 2 (see formula 5a). 

Not using array formulation, we need to use an extra cell range to keep the absolute 
differences and then apply the SUM and COUNT functions as follows: 

Set the formula for cell R15 as =ABS(S15−D15) and copy this to cells R16:R49. 

Replace the formula in B5 with =SUM(R15:R39)/COUNT(R15:R39). 

Alternatively, select cells R15:R49 and (entering using SHIFT + CTRL + ENTER) apply 
formula {=ABS(S15:S39−D15:D49)}. This array formula returns an array output. 

More directly, without any need for cells R15:R39, we can apply array formula 
{=SUM(ABS(S13:S37-D13:D37))/COUNT(D13:D37)} to cell B5. 

Array Functions 

Array functions are like normal functions except they return array outputs. As such, 
array functions are entered as array formulas with SHIFT + CTRL + ENTER, instead of the 
usual ENTER key and would be displayed with the distinctive { } brackets.  

Example 2. Array function LINEST(knownY’s, knownX’s, [const], [stats]) returns the 
statistics that describe the least squares method for fitting a straight line to the given 
data set comprising knownY’s and knownX’s. If the optional variable const is TRUE or 
omitted, the intercept value is computed. Otherwise, the intercept value is assumed to 
be 0. If optional stats value is FALSE or omitted, then only the coefficients and the 
intercept of the fitted straight line are computed. If it is TRUE, four additional rows of 
statistics are computed. To key in the formula, first select a row with number of X’s plus 
1 number of columns for the FALSE optional stats case. For the other case, expand the 
selection to 5 rows. 

Example 3. Array function TRANSPOSE(array) rotates the array by 90 degrees to make 
first row of the array as the first column of the output array, second row of the array ass 
the second column of the output array, and so on. It is important the size of the output 
array fits the expected output values. 

Example 4. Array function MMULT(array1, array2) multiplies the rows of array1 to 
columns of array2 as in SUMPRODUCT and so on to return a matrix. The number of 
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columns in array1 must be the same as the number of columns in array2, and all cells in 
these arrays must contain numbers, no blanks allowed. So instead of applying many 
SUMPRODUCT functions in each cell of N15:Q49 of Figure 2 and select the cell range and 
apply formula {=MMULT(E15:L49,TRANSPOSE(E5:L8))}.  

Solver 

Solver is available as a standard Add-in in Excel. That is, it only becomes available after 
you activate it by ticking Solver Add-in option in File/Options/Add-ins/Excel Add-ins/Go. 
Solver allows you to find the maximum or minimum value of an output variable (i.e., the 
objective function), subject to the constraints you specify. These constraints can include 
lower and upper limits on individual input values or their combinations (e.g., budget 
constraints).  

 

  


