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Abstract 

For a truthful evaluation of the mechanical response of structures reliable and 
adequate computational models are essential. Consequently, various researches 
have been devoted to the mathematical representation of cracked structures. This 
paper studies the performance of the simplified crack model in estimations of 
fundamental eigenfrequency as well as elastic Euler's critical load for 
transversely cracked beams of rectangular cross-sections with linearly-varying 
widths.  To obtain these solutions for different beams with diverse boundary 
conditions Rayleigh’s energy method which requires an assumed transverse 
displacement function can be applied.  After the appropriate displacement 
function is being selected, kinetic and strain energy, as well as the work done by 
an external axial compressive force P are evaluated.  From these values, the 
estimations of the fundamental eigenfrequency, as well as the critical load, are 
assessed. To obtain these preliminary estimates, static deflection functions were 
applied initially.  These functions represent a wide group of suitable functions 
since they automatically satisfy the required kinematic boundary conditions.  
Afterwards, alternative functions constructed from a dedicated polynomial 
solution were applied.  Since this mathematical form offers straightforward 
integration, the genuinely applied displacement functions were further upgraded, 
separately for eigenfrequency as well as for critical load estimation. All obtained 
simplified model’s solutions were afterwards compared to the results from 
equivalent and more detailed 3D finite models of the examined structures.  The 
comparisons of the results demonstrated very fine agreements with the results 
from 3D FE models for all performed analyses.  The considered simplified model 
thus clearly yields a suitable alternative in modelling of cracked beams with a 
linear variation of width in those situations, where cracks have to be considered 
within the analysis. 

Keywords: Cracked beams with transverse cracks; linear cross-sections’ variations; 
simplified computational model; transverse displacements- functions; fundamental 
eigenfrequency evaluation; Euler's critical load.  
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1. Introduction 

Any degenerative effect in structures during the utilization alters their mechanical 
reaction by considerably decreasing the stiffness and potentially leading to their failure.  
Therefore, several studies consider the detection and identification of stiffness 
reductions in engineering structures.  Such approaches for damages recognition and 
classification are often based on the measured structure’s answer since the occurrence 
of damage changes the structures’ response parameters.  However, the efficiency of 
these strategies depends on the quality of measured data as well as on computational 
models implemented.  

When analyzing cracked structures’ response thorough meshes of 2D or 3D finite 
elements offer the finest description of a general structure, as well as of the cracks and 
their surroundings.  Despite this, simplified models requiring fewer data are usually 
implemented in structural health monitoring techniques.  The “discrete spring” model 
presented by Okamura et al. (Okamura et al., 1969) is the model that has been 
implemented in numerous research studies.  Due to its simplicity this simplified model 
has been intensively applied in vibration analysis of cracked beams (F. Bakhtiari-Nejad 
et al., 2014), new various approaches for inverse identification of cracks (Labib et al., 
2015), as well as in experimental inverse identifications of a crack (Cao et al., 2014) or a 
concentrated damage (Greco and Pau, 2011).  Further, several papers were devoted to 
Euler–Bernoulli beam's finite element having an arbitrary number of transverse cracks 
differing in the principles of mechanics applied to obtain closed-form solutions of the 
genuine governing differential equation for transverse displacements (Biondi and 
Caddemi, 2007; Palmeri and Cicirello, 2011; Skrinar, 2009; Skrinar and Pliberšek, 2012).  

The majority of the research has been limited to structural elements with constant 
rectangular cross-sections.  Skrinar and Imamović (Skrinar and Imamović, 2018) studied 
bending of beams of various heights’ variations along the length implementing a multi-
stepped multi-cracked beam finite element (Skrinar, 2013) where the genuine 
continuous variation of height was modelled by an adequate series of steps.  Although 
this model offers good (but approximate) results, it is limited to bending analyses only. 

In this paper, the area of utilization of the simplified crack model is expanded to beams 
with linearly-varying widths where Rayleigh’s energy method is being implemented for 
fundamental frequency and Euler's critical load estimations. 

2. Simplified Computational Model  

As a crack in a beam alters the local compliance, the crack is in Okamura “discrete spring” 
mathematical representation modelled as a massless rotational linear spring of 
appropriate stiffness.  The neighbouring non-cracked parts of the beam to the left and to 
the right of the crack are modelled as elastic elements, connected by a linear spring.  For 
the first definition for rotational spring’s stiffness (given by Okamura et al. for a 
rectangular cross-section) as well as for all other definitions, the linear moment-rotation 
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constitutive law is adopted.  The model thus allows for a rather effortlessness 
description of a crack as only two parameters are required: its location L1 from the left 
end of the beam, and its depth which governs the spring stiffness Kr. 

3 Implementation of Rayleigh’s Energy Method for Fundamental Frequency and Euler's 
Critical Load Estimations 

Structural analysis is mainly concerned with the determination of a physical structure’s 
response when subjected to some action.  Each new computational model’s behaviour 
must be therefore tested in various engineering situations such as static, dynamic or 
buckling analyses. 

In dynamic analysis, eigen or natural frequencies are one of the basic properties of elastic 
dynamic systems.  Each such system has one or more natural frequencies i.e. 
frequency at which it tends to vibrate freely in the absence of any driving 
or damping force.  Therefore, the simplified model’s abilities in the first natural 
frequency prediction were studied as they dependent only on the structure’s properties 
(its stiffness and participating mass) and not on the load function. 

There are many available methods for determining the natural frequency (Newton’s Law 
of Motion, Rayleigh’s Method,...).  Some of these methods yield a governing equation of 
motion (from which the natural frequency may be determined afterwards), and the 
others produce the natural frequency only. 

In this study, which examines the behaviour of the simplified computational model, 
Rayleigh’s method (also known as the energy method), which reduces the dynamic 
system to a single-degree-of-freedom system consequently yielding just the first natural 
frequency is being utilised. 

Rayleigh's method requires an assumed displacement function w(x).  If this function is 
identical to the solution of the corresponding differential equation of motion (i.e. mode 
shape), the true fundamental frequency is being obtained.  As this is seldom true, the 
assumed displacement function introduces additional constraints.  Because they 
increase the stiffness of the system, Rayleigh's method overestimates the true 
fundamental frequency.  The fundamental lemma of the method thus states that the total 
energy of the system is equal to the maximum kinetic energy which also equals the 
maximum deformation (potential) energy. 

For the situation where the breathing of the crack is not considered i.e., the crack 
remains open, the "strain" energy (the potential energy stored as elastic deformation of 
the structure including crack) is approximated as: 
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https://en.wikipedia.org/wiki/Damping
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In Eq.(1) functions w1(x) and w2(x) are functions that represent the transverse 
displacements and must satisfy the most important kinematical boundary conditions, 
such as displacement and rotation.  The more accurate displacement function also 
provides a more accurate result.  In the absence of an exact solution of the differential 
equation (mode shape), approximate functions are applied, where static deflection 
functions v(x) represent a wide group of suitable functions since they automatically 
satisfy the required kinematic boundary conditions.  

To obtain the first eigenfrequency estimation the beam’s kinetic energy is approximated 
as 
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implementing the same displacement functions. 

Afterwards, the first in-plane vibrations eigenfrequency estimate is obtained from the 
total mechanical energy conservation law: 

kinstrain UU =                    (3) 

The results from these functions w(x) can be improved by evaluating new upgraded 
displacement functions due to a transverse load, given as q(x)=m(x)ω2w(x). 

The strain energy approximation can be also applied in the energy method for the 
buckling load evaluation.  The method assumes that the elastic system is a conservative 
system in which energy is not dissipated as heat, and, therefore, the energy added to the 
system by the applied external forces is stored in the system in the form of strain energy.  
The work (i.e. "applied" energy) done on the system by an external axial compressive 
force P is evaluated by applying the same transverse displacements functions: 

( )( ) ( )( )













+= 

==

L

1Lx

2

2

1L

0x

2

1app dxx'wdxx'w
2

P
U                (4) 

The energy conservation law states: 

appstrain UU =                    (5) 

from which the estimate of the buckling load Pcrit can be evaluated.  

Therefore, although the same static transverse displacements function due to bending 
allow for a very straightforward implementation either in natural frequency as well as 
in buckling analysis, their solutions are not the finest.  

Therefore, the assumed displacement functions w(x) are usually constructed from the 
analysed problem’s dedicated polynomial solution, primarily due to ease of their 
integration which is essential for a successful subsequent upgrade of the solutions.  
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Among the results obtained by implementing various assumed displacement functions, 
the smallest value yields an upper limit of the true fundamental frequency or buckling 
load.  

4. Numerical Validations  

Four cracked fundamental beam-structures were analyzed in order to investigate the 
effectiveness of the simplified model.  For all four structures that differed only in 
boundary conditions, the length L was 10 m and the Young modulus was 30 GPa with 
Poisson’s ratio 0.3.  The cross-section was a rectangle with height h = 0.2 m where the 
width b was linearly increasing from 0.1 m at the left-end to 0.2 m at the right-end.  A 
single transverse crack of the depth of 0.1 m was located at the mid-span to maximise its 
impact on the results for the majority of the examples, and the rotational spring’s 
definition given by Okamura was selected.  

The obtained results were further compared with the values from a commercial finite 
element program COSMOS/M where corresponding 3D finite models of the considered 
structures were established and analyzed.  The computational model consisted of 48,000 
3D solid finite elements with almost 75,000 nodal points.  In each node, three degrees of 
freedom were taken into account – vertical and two horizontal displacements.  The 
model’s vertical and horizontal displacements were obtained in discrete points by 
solving more than 220,000 linear equations.  Since this model allows for a realistic 
description of the crack those results further served as the reference values. 

In the first phase, the first eigenfrequency and the buckling load estimations were 
obtained by implementing static deflection functions due to a downward vertical 
uniform load q=2000 N/m along the complete structure.  These functions were further 
introduced into Eqs.(1)-(5). 

Afterwards, basic polynomial functions were constructed for each of the considered 
structures considering general boundary conditions only.  The implementation of these 
functions in Eqs.(1)-(5) yielded new sets of results for the first eigenfrequency and the 
buckling load. 

These basic general polynomial functions were also upgraded accordingly to the specific 
problem to see the impact of functions’ improvement to the quality of the results for both 
studied problems. 

In the penultimate step, special polynomial functions devoted exclusively to buckling 
analyses were created by considering additional boundary data.  Ultimately, also these 
functions were upgraded. 

4.1 Simply Supported Beam  

Initially, the governing differential equation of the elastic line for a slender beam 
subjected to bending in the plane of symmetry was solved.  This equation, known also as 
Euler–Bernoulli equation of bending, relates transverse displacement v(x), the 
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coordinate x, the geometrical and mechanical properties of the cross-section (unified in 
flexural rigidity EI(x)), and the applied transverse load q(x).  For the case considered 
where the flexural rigidity EI(x) is not a constant value this relation yields a fourth-order 
ordinary differential-equation with non-constant coefficients.  However, the crack, 
located arbitrarily within the beam (0L1L), separates the beam into two elastic parts, 
and to obtain the transverse displacements two coupled differential equations had to be 
solved.  Consequently, two displacement functions for the parts on the left (v1(x)) and 
right (v2(x)) side of the crack were obtained:  

( ) ( )
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The quality of these solutions was verified by analysing the considered structure by 
implementing the COSMOS/M commercial finite element program.  This model produced 
the midpoint’s vertical displacement of -0.1009 m thus confirming excellent result from 
the simplified model which has produced the value of -0.1013 m (with 0.34 % 
discrepancy).  Matching of the results between the two models was also very good for all 
other points along the beam as the discrepancy nowhere exceeded the value at the crack 
location. 

The initial eigenfrequency estimation was generated by inserting bending solutions into 
Eqs.(1)-(3).  This resulted in the value 1 = 18.53651 rad/s for the first eigenfrequency 
estimation.  On the other hand, the 3D FE model produced the value of 18.53429 rad/s 
again confirming excellent quality of the result from the simplified model as the 
discrepancy between the two models’ results was very low (0.01198 %). 

Afterwards, also the buckling load Pcrit was approximated from Eqs. (4)-(5) by 
implementing the same transverse displacements functions.  The buckling load 
estimation was 258,229 N.  Alternatively, the 3D FE model produced the value of 256,693 
N thus showing that the simplified model produced the results with a moderately small 
discrepancy (0.5985 %).  

Afterwards, general basic polynomial functions w1(x) and w2(x) were constructed by 
considering specific boundary conditions only (implementing zero boundary 
displacements as well as bending moments):  

( ) m5xm0x105.552  x108.328x 0.339xw 4-43-3
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The implementation of these functions into eigenfrequency computation resulted in the 
value of 1 = 18.6983 rad/s for the first eigenfrequency estimation which is clearly an 
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inferior result to the value from the bending functions as discrepancy increased to a (still 
quite acceptable) value of 0.885 %. 

The same basic polynomial displacement functions were further implemented in the 
buckling load analysis already producing an acceptable value for the buckling load: 
259,238 N with a discrepancy of almost 1 % (which was again higher than at static 
bending functions’ utilisation). 

Since the displacement functions were simple polynomials, the upgrading of basic 
polynomial functions was afterwards separately performed for first eigenfrequency 
estimation as well as for buckling estimation without any mathematical issues, yielding 
the following functions:  
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The newly derived at upgraded polynomial approximations wd(x) (obtained through 
four consecutive integrations of genuine basic polynomial functions) for the first 
eigenfrequency estimation produced the value 1 = 18.51594 rad/s, which has a rather 
low discrepancy (-0.099 %) against the 3D model value.  However, it should be noted 
that the obtained value underestimated the value from the 3D model which is not 
consistent with the theory.  Nevertheless, this divergence was a consequence of the 
computational model and not of the method, as the approximate method is being applied 
to a simplified model.  It should be also noted that the upgrading process could have been 
further repeated.  However, this was not executed due to the already low discrepancy 
achieved. 

The separate upgrade of original polynomial function was executed also for the buckling 
problem.  A new set of transverse displacements functions were derived at by realising 
that in buckling the transverse displacements are a sole function of axial compressive 
force Pcrit.  Therefore, the bending moments’ functions were expressed as functions of 
applied axial force and transverse displacements. The considered problem’s specific 
relation was Mz(x) = -Pcritv(x).  After two consecutive integrations the following functions 
were obtained: 

( )

( ) ( ) m5xm0 x+10Ln x10P105.246 xP101.388

xP105.783 + xP101.157  xP102.623 +xP101.745 + P101.208xw

crit

5-5

crit

10-

4

crit

-93

crit

-72

crit

-6

crit

-4

crit

-3

1,b

+−−

−=
 

( )

( ) ( ) m10xm5 x+10Lnx+ 10P108.410 +

xP101.157 xP109.253 +xP104.1845x P102.766 P101.934xw

crit

5-

4

crit

-93

crit

-82

crit

-6

crit

-4

crit

-3

2,b



−−−−=
 



ISSN 2601-8683 (Print) 
ISSN 2601-8675 (Online) 

European Journal of  
Formal Sciences and Engineering 

January - June 2020 
Volume 3, Issue 1 

 

 
28 

With these two new functions the "strain" energy, Eq.(1), as well as the "applied" energy, 
Eq.(4), were re-evaluated.  Finally, Eq.(5) yielded the improved value for the buckling 
load of Pcrit = 257,606.5 N with a decreased discrepancy of 0.356 %. 

In the last part, special alternative functions constructed from a dedicated polynomial 
solution were applied exclusively for the buckling analysis.  These functions were 
constructed by additionally considering boundary information regarding shear forces 
which resulted in the unknown buckling load Pcrit to be included in the displacement 
functions ws(x) (due to their complexity these functions are not presented here).  The 
buckling load obtained from these functions was 258,346.2 N (with the discrepancy of 
0.644 %).  These functions produced the result which was better than the value obtained 
from the original basic general polynomial function, but worse from those from the 
improved general polynomial solution.  Consequently, it was expected that the 
upgrading of these dedicated functions will result in the best approximation.  However, 
the integration of these functions (that included the unknown buckling load Pcrit) initially 
failed.  Therefore, in the integrations within the upgrade process, the value of the 
unknown buckling load was taken as 258,346.2 N.  Consequently, the bending functions 
become simple polynomials which allowed the integrations to be completed resulting in 
functions wsu(x).  The obtained buckling load was 257,557.4 N which became the 
simplified model’s best results as the discrepancy was 0.3369 % (which is just slightly 
better than the value that resulted from the upgrading of basic general polynomials). 

Afterwards, the above-described analyses were repeated for several locations of the 
crack along the beam, and the essential results are given in Tables 1 and 2. 

It is obvious from Table 1 that almost all the simplified model’s solution overestimate 
the corresponding “exact” values (i.e. values from the 3D FE model) as there are just two 
cases where the results just slightly underestimate the values from the 3D FE model. 
Initial simple general polynomial solutions w(x) mostly provided the least accurate 
results. However, these functions allowed for upgrading (wd(x)) that provided the 
situation’s lowest values that, according to the theory, should also be the most accurate. 

Similarly, Table 2 apparently shows that all the simplified model’s solutions 
overestimate the corresponding values from the 3D FE model also in buckling analyses. 
Basic general polynomial solutions w(x) initially provided results with less accuracy than 
the static bending displacement functions v(x) for almost all locations.  However, general 
polynomial solutions also allowed for the upgrade (wb(x)) that in most case further 
produces slightly better results than the static bending displacement functions. 

Furthermore, original special polynomial approximations ws(x) performed somehow 
better than general basic approximations. Ultimately, the best results for almost all 
locations were obtained from the upgrades (wsu(x)) of these special dedicated 
polynomials. The only exception is the case where the crack was 1 m from the weaker 
part of the structure where the static bending displacement functions produced just a 
slightly better result. 
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4.2 Cantilever, Clamped at the Right End 

As the second structure, a cracked cantilever was examined.  Again, derived at bending 
GDE’s solutions v(x) were compared against the 3D FE model solutions.  The simplified 
model produced the free end’s vertical displacement of -0.7272 m with a rather small 
discrepancy (0.032 %) against the 3D FE model result.  However, it is interesting to note 
that the discrepancy at the crack location is slightly higher (0.142 %) as the discrepancy 
actually increased with the distance from the free end.  Nevertheless, the general 
matching of the results between the two models was actually very good for all the points 
along the cantilever as the maximum discrepancy was everywhere below 1 %.  After the 
verification of the simplified model’s displacement functions, the initial eigenfrequency, 
as well as buckling load values were calculated and compared to the matching values 
from the 3D FE model.  All these values are given in Tables 3 and 4. 

After that, general basic polynomial functions w(x) were constructed by considering 
example’s specific boundary conditions only (considering zero boundary displacement 
and rotation as well as bending moment).  These functions, as well as their upgrades 
(wd(x) and wb(x)) , produced new values of the fundamental eigenfrequency and buckling 
load (see Tables 3 and 4). 

The cantilever’s study was completed by obtaining a buckling analysis dedicated 
polynomial solutions ws(x).  These functions were constructed by considering additional 
boundary information regarding shear forces at the clamped end.  In contrast to the 
simply supported beam structure, the inclusion of this additional information did not 
result in the unknown buckling load to be included in the newly derived at displacement 
functions.  Consequently, the integration of these functions (wsu(x)) in the upgrading 
process did not cause any numerical problems.  Both obtained values for the 
fundamental buckling load are given in Table 4. 

It is evident from Tables 3 and 4 that static bending functions v(x) produced a very 
decent result in the fundamental eigenfrequency estimation and, on the other hand, were 
quite unsuccessful in the buckling load analysis.  Similarly, also general basic 
polynomials w(x) performed well in dynamic analysis and were slightly less efficient in 
Euler load evaluation.  Nevertheless, separate upgrades of basic polynomial 
approximations for both kinds of problems brought evident improvement of the results 
where the results for eigenfrequency once more exhibited slightly better agreement with 
the results from the 3D FE model.  However, the special polynomial approximations 
ws(x) for buckling analysis already initially provided a decent result which was further 
efficiently improved with the upgrade process. 

4.3 Propped Cantilever  

All the above-described procedures were also repeated for the third structure, a propped 
cantilever with clamped-simply supported boundary conditions.  The main results are 
summarised in Tables 5 and 6. 
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4.4 Clamped-clamped Beam  

As the last a clamped-clamped beam was examined.  The key results from the procedures 
already explained above are given in Tables 7 and 8. 

Conclusions 

The fundamental eigenfrequency, as well as Euler's critical load determination for 
transversely-cracked slender beams with a linear variation of width, was studied by 
implementing the simplified Okamura’s computational model of cracked beams.  The 
solutions for four beam structures were obtained through Rayleigh’s energy method 
where kinetic and strain energy, as well as the work done by an external axial 
compressive force P, were evaluated by applying appropriate transverse displacement 
functions.  In the paper, various displacements functions were applied.  The results 
obtained with the implementation of the simplified model with the combination of 
various functions were afterwards compared to the results obtained from the pure 
numerical approach implementing 3D finite elements within the framework of the finite 
element method.  

Initially, transverse displacements’ functions v(x) due to transverse load were 
implemented. Although they produced good values for the first eigenfrequency (with the 
discrepancy below 0.4 %) the quality of the results for the buckling load was not very 
consistent as for some cases they have produced very low discrepancies (0.6 %), but for 
some other examples, the discrepancy was evidently higher (up to 18 %).  Furthermore, 
since these functions are not given as plain polynomials their upgrade through their 
integrations was not possible.  Afterwards, alternative general polynomial functions 
w(x) were constructed.  Also these functions exhibited better results for eigenfrequency 
estimations.  The maximum discrepancies were namely up to 3.8 % for eigenfrequency 
analysis and up to 10.8 % for buckling load analysis.  However, their mathematical form 
allowed for integration and, therefore, the genuine polynomial functions were further 
upgraded, separately for eigenfrequency (wd(x)) as well as for critical load (wb(x)) 
estimation.  These separated upgrades for eigenfrequency and buckling analyses have 
evidently improved the quality of the results.  The discrepancies in eigenfrequency 
analysis almost vanished (below 0.1 %) while the discrepancies for the buckling load 
dropped below 1.5 %. 

In the end, special polynomial functions ws(x) were constructed just for buckling 
analyses producing evidently better results than the general polynomial functions w(x) 
with the maximum discrepancy around 2.1 %.  These functions have been further 
upgraded. Although these improved functions (wsu(x)) generally produced the best 
results their improvement was not as apparent as in the previous cases as their 
discrepancies were already rather low prior to upgrading. 

Despite the clear differences in the mathematical form and computational efforts 
between both computational models considered, the considered examples have thus 



ISSN 2601-8683 (Print) 
ISSN 2601-8675 (Online) 

European Journal of  
Formal Sciences and Engineering 

January - June 2020 
Volume 3, Issue 1 

 

 
31 

shown that the application of the simplified model produces adequately matching of the 
results as no major differences are noticeable against 3D FE solutions.  It can be thus 
concluded that the model is suitable for free vibration analyses with non-breathing crack 
as well as for buckling load evaluation.  It is even reasonable to assume that by applying 
appropriate transverse displacement functions even higher eigenfrequencies could be 
evaluated.  

The Okamura’s computational model has thus proved itself to be usable for beams with 
linear variations of widths even by applying rather simple analysis methods.  
Nevertheless, it is rational to expect that by implementing more dedicated 
computational methods for eigenfrequency analysis as well as for buckling analysis this 
would also reflect in better results from the simplified model. 
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Table 1: Results for fundamental eigenfrequency 1 [rad/s] for the simply supported 
beam 

 Functions/model 

L1 v(x) w(x) wd(x) 3D FE  

1 m 19.52986 22.49288 19.51193 19.48735 

2 m 19.19155 20.77441 19.17580 19.14632 

3 m 18.83349 19.65291 18.81885 18.78653 

4 m 18.59319 18.99199 18.57628 18.58736 

5 m 18.53651 18.69833 18.51594 18.53429 

6 m 18.67056 18.70218 18.64743 18.62232 

7 m 18.95363 18.93382 18.93022 18.91004 

8 m 19.29570 19.29387 19.27301 19.25661 

9 m 19.57118 19.62610 19.54853 19.53399 

 
Table 2: Results for buckling load Pcrit [N] for the simply supported beam 

 Functions/model 

L1 v(x) w(x) wb(x) ws(x) wsu(x) 3D FE 

1 m 285104.3 339121.8 287056.7 308723.4 285468.7 283826.0  

2 m 273286.9 294491.2 273529.8 282226.0 272810.7 271407.9 

3 m 263088.2 271730.4 262402.4 266115.2 262117.1 260947.2 

4 m 257902.7 261355.8 257111.3 258784.3 256987.0 255966.7 

5 m 258229.1 259237.6 257606.5 258346.2 257557.4 256692.7  

6 m 263352.1 263245.0 262925.0 263204.4 262921.3 262201.6  

7 m 271791.8 271816.4 271538.2 271615.0 271524.6 270944.1  

8 m 281167.4 282875.9 281011.4 281076.4 280880.7 280389.8  

9 m 288346.3 292723.4 288132.0 288365.6 287851.1 287389.3  

https://doi.org/10.3311/PPci.11897
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Table 3: Results for the fundamental eigenfrequency 1 [rad/s] of the cantilever  

Method/model 1 discrepancy 

COSMOS 3D FE model 8.494559 rad/s - 

bending functions v(x) 8.519639 rad/s 0.295 % 

general basic polynomial approximations w(x) 8.529249 rad/s 0.408 % 

upgrade of general polynomial approximations wd(x) 8.492690 rad/s -0.022 % 

 
Table 4: Results for buckling load Pcrit [N] of the cantilever  

Method/model Pcrit discrepancy 

COSMOS 3D FE model 76724.8 N - 

bending functions v(x) 90559.3 N 18.031 % 

general basic polynomial approximations w(x) 81818.4 N 6.639 % 

upgrade of basic polynomial approximations wb(x) 76856.7 N 0.172 % 

special polynomial approximations ws(x) 78086.7 N 1.775 % 

upgrade of special polynomial approximations wsu(x) 76809.6 N 0.110 % 

 
Table 5: Results for the fundamental eigenfrequency 1 [rad/s] of the propped cantilever  

Method/model 1 discrepancy 

COSMOS 3D FE model 27.95442 rad/s - 

bending functions v(x) 28.02343 rad/s 0.247 % 

general basic polynomial approximations w(x) 29.02114 rad/s 3.816 % 

upgrade of general polynomial approximations wd(x) 27.94767 rad/s -0.024 % 

 
Table 6: Results for buckling load Pcrit [N] of the propped cantilever  

Method/model Pcrit discrepancy 
COSMOS 3D FE model 530869.9 N - 
bending functions v(x) 548504.2 N 3.322 % 
general basic polynomial approximations w(x) 588154.4 N 10.791 % 
upgrade of basic polynomial approximations wb(x) 537350.8 N 1.221 % 
special polynomial approximations ws(x) 542066.3 N 2.109 % 
upgrade of special polynomial approximations wsu(x) 533636.5 N 0.521 % 
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Table 7: Results for the fundamental eigenfrequency 1 [rad/s] of the clamped-clamped 
beam 

method 1 discrepancy 

COSMOS 3D FE model 42.56036 rad/s - 
bending functions v(x) 42.72411 rad/s 0.385 % 
general basic polynomial approximations w(x) 43.54528 rad/s 2.314 % 
upgrade of general polynomial approximations wd(x) 42.56100 rad/s 0.0015 % 

 
Table 8: Results for buckling load Pcrit [N] of the clamped – clamped beam 

method Pcrit discrepancy 
COSMOS 3D FE model 1044774.0 N - 
bending functions v(x) 1101546.7 N 5.434 % 
general basic polynomial approximations w(x) 1082479.2 N 3.609 % 
upgrade of basic polynomial approximations wb(x) 1030595.4 N -1.357 % 
special polynomial approximations ws(x) 1052194.1 N 0.710 % 
upgrade of special polynomial approximations wsu(x) 1028921.5 N -1.517 % 

 


